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The effective susceptibility χeff of suspensions of ferromagnetic particles in a liquid was measured
using inductance measurements. These measurements were used to test a model that predicts how
χeff varies due to demagnetization, as a function of sample aspect ratio, particle packing fraction,
and particle aspect ratio [R. Skomski, G. C. Hadjipanayis, and D. J. Sellmyer, IEEE Trans. Magn.
43, 2956–2958 (2007)]. For spherical particles or cylindrical particles forcibly aligned with an
external magnetic field, the model can be fitted to the measured data with agreement within 13%.
This model predicts suspensions of aligned, large-aspect-ratio particles should have the largest χeff ,
approaching the particle material susceptibility in the limit of large particle aspect ratio. However,
χeff was found to be no larger than about 4 for cylindrical iron particles of various aspect ratios,
close to the value obtained for spheres. This results from the random alignment of non-spherical
particles relative to the magnetic field naturally found in suspensions, which increases the demagnet-
ization effect and limits χeff . The contribution of random particle alignments to the demagnetization
effect and χeff remains to be accounted for in models. Published by AIP Publishing.
https://doi.org/10.1063/1.5041750

I. INTRODUCTION

Suspensions of magnetic particles in a liquid can be con-
trolled by an applied magnetic field, a property that is taken
advantage of, for example, in the fields of ferrohydrodynam-
ics2 and magnetorheology.3 The parameter that directly con-
trols the force applied by a magnetic field in these cases is
the effective magnetic susceptibility χeff . If the suspensions
are also conducting, magnetohydrodynamic effects can occur
such that a magnetic field can in principle be generated by
the conducting fluid flow, and the magnetic field can deflect
the conducting flow via a Lorentz force, effects whose mag-
nitude scales with 1þ χeff .

4–6 These phenomena are not
easily achieved with known fluids—pure conducting liquids
generally have a magnetic susceptibility χ � 1. On the other
hand, there is potential that if a material can be designed
with large enough χeff * 1, these phenomena could be more
easily observed on a laboratory or device scale of order 10
cm.7 Our goal is to determine how the effective magnetic
susceptibility χeff depends on the properties of suspensions.
In particular, we would like to determine the largest values
of χeff that can be obtained, as larger values would make
such suspensions more useful for producing magnetohydro-
dynamic phenomena on the laboratory scale.

The effective susceptibility χeff is defined by the propor-
tionality χeff ¼ fM=Happ, where Happ is an externally
applied magnetic field, M is the magnetization per unit
volume of magnetic material, and f is the packing fraction
by volume of the magnetic particles. Note that the factor of
f in the expression differs from traditional definitions in pure

materials where the sample is 100% magnetic material—here
we define χeff as susceptibility per unit volume of sample,
since we are interested in the force from an applied magnetic
field on the sample as a whole. For linear magnetic materials
χeff is independent of Happ, in practice, this tends to be the
case for small Happ before the magnetization begins to
saturate.

Locally, the magnetic susceptibility χ ¼ M=H is consid-
ered an infinite bulk material property depending on the local
magnetic field H. In contrast, χeff as a macroscopic parameter
can be much smaller than χ due to demagnetization, an
effect in which the induced magnetic dipole creates an addi-
tional magnetic field DM (where D is called the demagnet-
ization factor) that opposes Happ. The net magnetic field
inside the material Happ � DM that determines the net local
magnetization M is less than Happ, resulting in χeff being
smaller than χ. While D is not necessarily a uniform scalar
quantity except for uniformly magnetized ellipsoids, it is
often approximated as such for the purpose of performing
tractable calculations. The effective susceptibility can then be
written such that the demagnetization is a correction factor
on the material susceptibility:

f

χeff
¼ 1

χ
þ D: (1)

It is well-known for single-piece solid magnets, for example,
that D depends on the shape of the magnet. In particular,
D is small in the limit of long, thin magnets aligned with the
applied magnetic field—in this limit, χeff approaches
the material susceptibility χ. For single-piece solids, unless
the aspect ratio of the material is extremely large, χeff � χ
and to a good approximation, χeff � f=D. χeff has beena)eric.brown@yale.edu
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calculated for many particle shapes.8 For example, for a
spherical particle D ¼ 1=3, resulting in a maximum χeff � 3
as long as χ � 3. For such geometries with aspect ratio close
to 1, the demagnetization effect can be considered a dominat-
ing factor determining χeff , rather than a small perturbation on
the material susceptibility χ.

Demagnetization factors are less well-understood for
systems of random arrangements of particles such as suspen-
sions. With many particles, the demagnetization factor D can
depend on geometries of both the particles and the sample
as a whole, as well as positions and alignments of particles
relative to each other and the applied magnetic field.

For randomly packed spherical particles, it has been
theoretically argued that the demagnetization factor is
D ¼ 1

3 (1� f)þ Dgf, where Dg is the global demagnetization
factor based on the geometry of the sample.9 Dg was assumed
to have the same value as the demagnetization factor for a
single particle of the same shape. A numerical calculation con-
firmed that this model is a good approximation within 3% for
a sample of randomly packed spherical particles for sample
aspect ratios γg ¼ 0:5 to 1 and packing fractions f from 0.4
to 0.6.10 It remains to be seen how well the prediction holds
over a wider parameter range, in particular, at larger γg where
χeff is expected to be larger.

A more general model takes advantage of the fact that
exact expressions can be found for homogeneously magne-
tized ellipsoids of revolution to obtain an expression for
identical ellipsoidal particles homogeneously dispersed in
any non-magnetic medium (including suspensions) in which
particles are aligned with each other and the external
magnetic field.1 Replacing the factor of 1=3 for spheres9 with
a more general function Dp which is the demagnetization
factor of each particle yields1

D ¼ Dp(1� f)þ Dgf: (2)

Here Dp may be different from the global demagnetization
factor Dg and so is an unknown function of particle geome-
try. Equation (2) may be interpreted as a weighted average of
Dp and Dg in f, where Dp dominates at small f where the
demagnetization fields of particles do not interact with each
other, and Dg dominates at large f where there is a lot of
overlap of magnetic fields of neighboring particles so the
overall sample shape mainly determines the magnetic field
lines. An expression for χeff can be obtained by combining
Eqs. (1) and (2), which simplifies if demagnetization effects
are as significant as they are for typical single-piece
ferromagnetic materials in the limit where χ � χeff to

χeff �
f

Dp(1� f)þ Dgf
: (3)

Since Dp and Dg are expected to be small for large aspect
ratios, this model makes a practically important prediction:
that in the limit of large particle aspect ratios γp and large
sample aspect ratios γg, χeff will approach the material sus-
ceptibility χ. To our knowledge, it has not yet been tested
whether this model captures the effects of different particle
shapes on χeff , and there is no model or data on how Dp

depends on particle aspect ratio or other parameters.

In this manuscript, we test the applicability of Eq. (3) to
suspensions of spherical and cylindrical particles by measur-
ing χeff over a wide range of packing fraction f, sample
aspect ratio γg, and particle aspect ratio γp. The remainder of
the manuscript is organized as follows. We first describe the
suspensions used in Sec. II A. We describe the gradiometer
used to measure χeff in Secs. II B–II D. We test the linearity
of the magnetic response of the suspensions in Sec. III A.
Measurements of χeff as a function of f, γg, and γp are
reported in Sec. III B. We test the model in the case of parti-
cles aligned with the magnetic field in Sec. III C. Finally, in
Sec. III D, we test whether particle alignment with the mag-
netic field plays an important role in χeff , an effect which
was not accounted for in Eq. (3).

II. MATERIALS AND METHODS

A. Materials

We suspended iron particles (density 7834 kg/m3 and
purity 99.5%) of mean diameter 29 μm, where 90% of parti-
cle diameters are within the range 18–40 μm, purchased from
Chemicalstore.com. The particles are nearly spherical with a
standard deviation of 4% in the diameter. We use these
nearly spherical particles in experiments unless otherwise
specified. The suspending liquid was a eutectic alloy of
gallium and indium known as eGaIn (density 6250 kg/m3),
which was produced as described in Ref. 7. We used a liquid
metal for its potential in magnetohydrodynamic applications.
The properties of the liquid metal are not expected to be
important here, other than the effect of its conductivity
3:40� 106 S/m11 contributing to stronger eddy currents that
could reduce χeff at high frequencies of applied alternating
magnetic field (see Sec. III A). Samples were kept in a bath
of hydrochloric acid at pH , 0:9 to prevent oxidation of
the metals.7 Dry granular samples were obtained by mixing
the iron particles with non-magnetic sand.

In both suspensions and dry granular samples, the
packing fraction f was obtained by measuring masses of the
constituent materials and using density to convert to a
packing fraction by volume of the magnetic material (iron)
divided by the total volume taken up by the sample. In the
case of dry granular samples, the total volume of the sample
was measured as the volume taken up in the sample
container, which includes air.

B. Experimental setup

Measurements were taken using a gradiometer which
consists of two pairs of inductor coils shown in Fig. 1. The
gradiometer measures χeff of a material sample based on how
it changes the mutual inductance between two surrounding
coils P1 and S1. The sample sits in a cylindrical tube which
is placed inside the secondary coil S1, while coil S1 is inside
the primary coil P1. There is another nominally identical set
of coils P2 and S2. An alternating current Ip is applied at
frequency f (angular frequency ω ¼ 2πf ) through the
primary coils P1 and P2, while the induced voltage εind is
measured across both the secondary coils S1 and S2. The sec-
ondary coils are linked in the opposite direction in the circuit
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such that the mutual inductances of each pair of primary and
secondary coils—M1 and M2, respectively—cancel in their
contribution to the measured εind when there is no sample
inside coil S1.

We intend to measure in the linear material response
range so as not to mix demagnetization effects with satura-
tion effects in the measurements. In theory, the induced
voltage is then proportional to χeff . In practice, the two pairs
of coils are not identical which we account for with a small
correction factor ΔM ¼ M1 �M2. Furthermore, there is a
background voltage noise εnoise measured when there is no
sample and no applied current. In the linear material response
range, the theory of induction allows derivation of an expression
for the induced voltage εind

ε2ind ¼ ε2noise þ ω2I2p [αM1χeff þ ΔM]2, (4)

where α is the fraction of volume of coil S1 filled by the
sample. This expression assumes that the background noise
is distributed among all phases, which differs from the fixed
phase of the induction signal so that the root-mean-square
values of their respective contributions to the induced
voltage are added in quadrature.

The geometric parameters of the system are as follows.
The primary coil P1 has length Lp ¼ 127:0+ 0:2 mm, diam-
eter dp ¼ 50:8+ 0:2 mm, and Np ¼ 332+ 22 turns of wire.
The secondary coil S1 has length Ls ¼ 25:4+ 0:2 mm,
diameter ds ¼ 14:8+ 0:2 mm, and Ns ¼ 190+ 14 turns of
wire. The coils S2 and P2 are nominally identical to S1 and P1,
respectively. All suspensions were prepared in cylindrical
containers of length L that satisfies Ls , L , Lp to minimize
fringe effects. The filling fraction of the coil S1 is then given
by α ¼ d2=d2s , where d is the diameter of the sample. We
aligned the sample vertically within coil S1 by finding the
position of maximum measured induced voltage, as misalign-
ment along the axis of the cylinder results in a reduced
signal. The samples had inner diameter d ¼ 10:2+ 0:1 mm
unless otherwise specified, corresponding to a typical filling
factor α ¼ d2=d2s ¼ 0:471. The sample aspect ratio is given
by γg ¼ L=d.

Here we summarize some typical electrical measurement
parameter values and errors. All electrical components,
including those outside the coils, remained in an identical

configuration from run to run to minimize errors. We report
root-mean-square values for all of our measurements of both
alternating current and voltage throughout the paper. For our
measurements, the applied alternating current is typically
Ip ¼ 65+ 0:5 mA (corresponding to an 0.8% error) unless
otherwise noted, and the uncertainty in the measured εind is
0:06%εind þ 0:04 mV, as given by the manufacturer (Agilent
model 34401A multimeter). We typically report measure-
ments at frequencies f ranging from 200 to 2000 Hz, and χeff
is calculated from Eq. (4), using an unweighted average over
this frequency range unless otherwise specified. At these
typical measurement values, and, for example, when χeff �
1:3 (corresponding to f � 0:18), we measure εind � 10 mV,
with a voltage uncertainty � 0:4%, which is generally less
than the uncertainty on the current measurement. The noise
term εnoise is due to electronic noise, and as such, varies
when the measurement equipment is on. It is thus measured
as εind at a weak signal with frequency f ¼ 5 Hz at Ip ¼ 65
mA. We measured εnoise ¼ 3 mV on average, with a standard
deviation of 0.4 mV over the course of a series of experi-
ments shown in one plot, or 1 mV over the longer time scale
of different measurement series. When added in quadrature
as in Eq. (4), this leads to an error on εind of less than 0.5%
for χeff � 1:3, for example, which is small compared to the
other errors for these typical measurement parameters. This
error becomes dominant when the signal is smaller, notably
where we test the linearity of the signal at small values of Ip
or f in Sec. III A, or small f where χeff � 1. Similarly, the
absolute error on χeff from the error of ΔM is 0.01, or equiva-
lently less than 0.8% of αM1χeff when χeff � 1:2 for the
typical measurement parameters (see Sec. II C on how values
of M1 and ΔM are obtained). Thus, the largest systematic
source of error in calculating χeff from Eq. (4), unless other-
wise noted, typically comes from the 0.8% on the applied
current Ip for our typical parameters and χeff � 1:2.

When we repeated measurements by turning off the elec-
tronics, taking a sample container out from inside the coils,
putting the sample back, and turning on the electronics
again, the run-to-run standard deviation was 2.5% for sus-
pensions and granular samples and 0.2% for macroscopic
solid pieces. The larger run-to-run variation of suspensions
and powders may come from the rearrangement of particles
as the sample containers are disturbed, but it is smaller than
the 6% standard deviation observed in numerical
simulations.10

C. Inductance calibration

To provide calibration values of M1 and ΔM in Eq. (4),
we measure the mutual inductances of each coil indepen-
dently without a sample, in each case removing the other coil
from the circuit and measuring without a sample. In these
cases, the measured voltage is expected to be

ε2ind ¼ ε2noise þ ω2I2pM
2
i , (5)

where i ¼ 1 or 2 is the coil pair index number.
Measurements of ε2ind are shown as a function of ω2I2p in
Fig. 2 for both coil pairs. We fit Eq. (5) with εnoise and Mi as
fit parameters for each pair to obtain the slopes M1 and M2,

FIG. 1. (a) The circuit diagram of the gradiometer used to measure the effec-
tive susceptibility χeff of a sample based on the change in mutual inductance
of a solenoid pair. (b) A diagram (not to scale) that shows a cross section of
the coils and sample.
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respectively. The error bars in the figure represent the sum of
a 0.2% standard deviation of multiple repetitions and a 0.8%
systematic error, except for the lowest frequency point which
is the one used to obtain the value of εnoise where the uncer-
tainty on the voltage measurement was much larger. To
obtain a fit with a reduced Chi-squared of 1 (where the
reduced Chi-squared value of a fit corresponds to the mean-
square difference between the data and fit, normalized by the
error), we increase the percentage input errors to 1.6% and
1.9% for the higher-frequency points of coil pairs 1 and 2,
respectively. The fit yields M1 ¼ (1:245+ 0:004)� 10�4 H
and M2 ¼ (1:253+ 0:004)� 10�4 H. These measured
values are consistent with the expected theoretical value M ¼
NpNsAs=Lp ¼ (1:2+ 0:1)� 10�4 H based on the dimen-
sions of the setup, where As ¼ πd2s =4 is the cross-sectional
area of the secondary coil. The difference between these
measured mutual inductances is ΔM ¼ M2 �M1 ¼
(8+ 6)� 10�7 H. These values M1 and ΔM are used as cali-
brations to calculate χeff from Eq. (4). The lowest-frequency
point in Fig. 2 is seen to be well above an extrapolation of
the linear scaling found at high frequency, confirming that
this frequency is low enough to measure εnoise.

D. Susceptibility calibration

We used single-piece solid cylindrical samples to
calibrate χeff measurements in our setup. To account for the
demagnetization effect, we use for reference a numerical sim-
ulation of the demagnetization factor D for single-piece
cylindrical samples of various aspect ratios γ from Chen
et al.,12,13 shown in Fig. 3. We fit the function

D ¼ Aγn (6)

to this data, over the range 2 , γ , 50, which covers our
measurement range. We adjusted the input error to be 11% to
obtain a reduced Chi-squared of 1, yielding A ¼ 0:40+ 0:04
and n ¼ �1:35+ 0:04.

To calibrate our setup, we measured χeff of single-piece
solid samples for different aspect ratios in Fig. 4. We used
different grades of ferrite from National Magnetics Group,
and iron from Fair-rite. The values of material susceptibility
χ given by the suppliers and diameters d with uncertainties
of up to 0.3 mm are given in the legend of Fig. 4. A reference
curve χref is shown in Fig. 4 for each material, which is
calculated by inserting the fit function for D [Eq. (6)] into
Eq. (1) with f ¼ 1. Since χ � 1 for all of these materials,
the predicted χref curves are all close to each other. While
the data tend to follow similar trends as the expected calibration
curves, there are significant differences.

To come up with an appropriate calibration adjustment,
we first consider that sample aspect ratio may not be the
primary parameter which it could depend on. In the ideal
theory assumed in Eq. (4), if Ls � L � Lp, the magnetic
field inside S1 is expected to be uniform. In practice, fringe
effects may add a correction. To come up with a calibration

FIG. 4. Measured effective susceptibility χeff of single-piece solid samples
as a function of aspect ratio γ. Data are shown for different material suscepti-
bility χ and diameters d as indicated in the legend. Lines: reference curves
based on the simulation results of Chen et al.,12 for the different material
susceptibilities χ given in the legend.

FIG. 2. Induced voltage from the mutual inductance of each pair of solenoid
coils in isolation. Solid circles: coils P1 and S1. Open squares: coils P2 and
S2. The slopes of the fits yield the squares of the mutual inductances M1

(solid line) and M2 (dashed line), and the constant at low-frequency yields
the square of εnoise. These parameters are used for calibration of the
apparatus.

FIG. 3. Demagnetization factor D for a single-piece cylindrical sample as a
function of aspect ratio. The data are reproduced from Chen et al.12 A power
law is fit to obtain a reference curve to account for the demagnetization
effect in single-piece solids.
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adjustment as a function of the sample length L, we replot
our measurements of χeff for single-piece samples from
Fig. 4 normalized by the reference curve χref as a function
of the sample length L in Fig. 5. A systematic dependence on
L is observed in Fig. 5, similar to the trend in Fig. 4. In
contrast, there is no significant systematic trend in d. This
confirms the calibration should be made as a function of
L, but not as a function of d. We fit the data to a power law
to obtain calibration function χeff =χref ¼ 1� 25:8L�1:30

when L is in units of mm. This calibration function fits the
data with a root-mean square difference of 7.6%. Our data
presented in Secs. III B–III D, where quantitative values are
of interest, is divided by this calibration function. Based on
the variation of the fit around the data, we introduce an error
of 7.6% from fringe effects and other unknown sources when
comparing samples in all following measurements of χeff .
For much of our data, where we have a constant L ¼ 112
mm, this amounts to an upward correction of 5% on the data
and does not affect trends.

III. RESULTS

A. Linearity of magnetic response

To characterize the magnetic susceptibility of suspen-
sions as a function of sample aspect ratio, particle packing
fraction, and particle aspect ratio, we first check whether we
can characterize each sample by a well-defined χeff , i.e., a
value that is independent of the frequency f and magnitude
Happ of the applied magnetic field. To test the frequency-
dependence, some examples of the measured susceptibility
χeff are shown for dry granular materials and suspensions as
a function of frequency f in Fig. 6, at sample aspect ratio
γg ¼ 11, length L ¼ 112:2 mm, and packing fractions f
shown in the legend. The error bars plotted are the quadratic
sum of the 2.5% run-to-run standard deviation and the 0.4
mV error on the noise voltage measurements. The 0.4 mV
error leads to a large error at low frequencies where the
signal is weak. A plateau in χeff is found at frequencies
f , 2000 Hz for all suspensions of nearly spherical particles

reported in this paper. At higher frequencies, χeff decreases,
qualitatively similar to the frequency response of other mag-
netic materials. The decrease in χoff starts at lower frequen-
cies for suspensions than dry granular materials, which may
be expected due to stronger eddy currents in the higher
conductivity suspensions which oppose the applied magnetic
field more strongly at higher frequency.

To identify a characteristic χeff for each sample, we use the
value of χeff in the low-frequency plateau. This plateau is
typical of ferromagnetic materials, and so it is expected that
this plateau value is the relevant value of χeff down to the DC
limit at low frequencies. At frequencies f , 200 Hz, the data
remain consistent with the plateau, however, there are large rel-
ative uncertainties in this range due to the low voltage signal.
Thus, in other plots in this paper, we report the averaged χeff
over the range of 200 Hz to 2000Hz as the representative value
for the low-frequency plateau, unless we specify otherwise that
we found the low-frequency plateau in a different range. This
could introduce an error if there is a trend in χeff with fre-
quency, as seen for f ¼ 18% suspension in Fig. 6. In this
case, which is comparable to the worst case, using the mean of
χeff for frequencies in the range of 200 Hz to 2000 Hz can
underestimate a fit in the zero-frequency limit by up to 3%.

We next test whether the magnetic response is linear in
the applied magnetic field Happ (equivalently, whether χeff is
independent of Happ ) and whether the suspensions behave
more like paramagnetic or ferromagnetic materials. We plot
the magnetization per unit volume of sample fM ¼ χeff Happ

vs. the applied magnetic field Happ ¼ IpNp=Lp in Fig. 7 for a
suspension with f ¼ 0:34, γg ¼ 2:5, and L ¼ 25:40 mm. We
show these measurements with histories of both increasing
and decreasing applied current Ip (/Happ). It is seen in
Fig. 7 that these ramps give equivalent results, indicating a
lack of hysteresis in the measured range. To test the linear
response, we fit a linear function with a constant offset to
these data where the random error is the quadratic sum of the
2.5% run-to-run standard deviation and the 0.4 mV random

FIG. 6. Examples of χeff as a function of frequency f . Solid symbols: sus-
pensions of iron particles in eGaIn at f ¼ 0:18 (circles) and f ¼ 0:40
(squares). Open symbols: dry granular materials at f ¼ 20% (up-pointing
triangles) and f ¼ 43% (down-pointing triangles). χeff reaches a plateau for
f , 2000 Hz. The vertical lines indicate the bounds of the frequency range
where χeff is averaged over for measurements reported in other plots.

FIG. 5. Ratio between the measured effective susceptibility χeff for single-
piece solid samples and the reference value from Chen et al.,12 as a function
of sample length L. Data are shown for different material susceptibility χ and
diameters d as indicated in the legend. Solid line: fit of data to obtain a cali-
bration function for correcting later data.
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error on voltage measurements, which yields a reduced
Chi-squared of 0.8. The consistency of the linear fit with the
data confirms the data are consistent with a χeff independent
of Happ over this range, verifying the linearity assumed in
deriving Eq. (5). The error bars plotted in Fig. 7 include both
these systematic and random errors. The constant offset in
the linear fit is 5 A/m, which is consistent with M ¼ 0 at
H ¼ 0 within the error of 12 A/m on M at that point due
mainly to the 0.5 mA systematic error on the current. Since
we find M consistent with zero at Happ ¼ 0 with a history of
decreasing Happ, then there is no resolvable remnant magneti-
zation. The lack of hysteresis or remnant magnetization indi-
cate that the suspensions behave as linear paramagnetic
materials in this range, despite the fact that the particles
consist of a ferromagnetic material. This is likely because the
particles are able to move around in the liquid and reorient
more freely than molecular dipoles in magnetic domains in a
solid.

B. Variation of χeff with aspect ratios and packing
fraction

Now that we have calibrated the apparatus and estab-
lished linearity of the response over our measurement range,
we now measure the dependence of the effective susceptibil-
ity χeff on the sample packing fraction f, sample aspect ratio
γg, and particle aspect ratio γp to test and fit the model pre-
dictions of Eq. (3).

Figure 8 shows how χeff varies with packing fraction f
for two series of suspensions and one of dry granular materi-
als with spherical particles (γp ¼ 1), and sample aspect ratios
γg ¼ 2:5 and 11. Plotted errors in this section correspond to
the quadratic sum of the systematic and random errors: 1 mV
on the voltage, 0.8% on the current, 3% uncertainty on mea-
suring χeff over a frequency range (Fig. 6), 2.5% run-to-run
deviation, and 7.6% uncertainty based on the calibration in
Fig. 5. Measurements are shown in Fig. 8 for packing frac-
tions up to the liquid-solid transition fc ¼ 0:407+ 0:003
for the suspension, defined as the lowest packing fraction
where a non-zero yield stress is measured. Measurements of

the yield stress for these samples were reported in a previous
paper.7 For each series, χeff increases with increasing f. On
average, χeff of dry granular materials is higher than that of
these suspensions by 11% at the same f.

Figure 9 shows the effective susceptibility χeff as a func-
tion of sample aspect ratio γg, for spherical particles (γp ¼ 1)
and f ¼ 0:4. To vary γg and satisfy the condition
Ls , L , Lp, the sample diameter d had to be varied along
with the length. We use d ¼ 10:2+ 0:1 mm for γg , 15,
d ¼ 7:1+ 0:1 mm for γg ¼ 19, and d ¼ 3:7+ 0:1 mm for
γg . 22. At small γg, χeff increases with γg and reaches a
plateau for γg * 10.

To test the dependence of χeff on particle aspect ratio γp
in Eq. (3) which assumes that particles are aligned with the
applied magnetic field, we made dry samples of stacked

FIG. 7. Magnetization per unit volume of sample fM ¼ χeff Happ of suspen-
sions as a function of applied magnetic field Happ. Closed circles: increasing
Happ (or Ip). Open triangles: decreasing Happ (or Ip). Line: linear fit. The sus-
pension behaves as a linear paramagnetic material, with no hysteresis or sig-
nificant remnant magnetization.

FIG. 8. Effective susceptibility χeff as a function of packing fraction f for
spherical particles (γp ¼ 1). Solid symbols: suspensions at sample aspect
ratio γg ¼ 11 (diamonds) and γg ¼ 2:5 (circles). Open squares: dry granular
material at γg ¼ 11. The suspensions exhibit a slightly smaller χeff than dry
granular materials at the same sample aspect ratio γg ¼ 11. Lines: fit of
Eq. (7) for suspensions at γg ¼ 11 (solid line) and γg ¼ 2:5 (dashed line),
where fit parameters are obtained from simultaneously fitting data of Figs. 8–10.

FIG. 9. Effective susceptibility χeff of suspensions as a function of sample
aspect ratio γg. Solid symbols: spherical particles (γp ¼ 1) at f ¼ 0:40.
Line: model result of Eq. (7), where fit parameters are obtained from simulta-
neously fitting data of Figs. 8–10. Open Symbols: numerical simulation of
spherical particles at f ¼ 0:40.10
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cylindrical particles where the particles were forced to be
aligned with the applied magnetic field. To make such
aligned samples while holding γg and f constant, we cut a
130 mm long cylindrical ferrite rod into collections of gradu-
ally smaller pieces to obtain a series of decreasing γp. Each
piece was nearly cylindrical, with roughness on a scale of 1
mm at the two ends of the cylinder due to the cutting
process. The packing fraction f ranged from 100% to 97%
due to some loss of material. This resulted in a number of
pieces ranging from 1 for the largest γp to 32 for the smallest
γp of the series. The pieces were arranged in a stack in the
sample container with a common cylindrical axis aligned with
the applied magnetic field. The measured χeff as a function of
γp for these aligned particles is shown in Fig. 10 for two
series, one with γg ¼ 20 and one with γg ¼ 11. χeff initially
increases with increasing γp and levels off for larger γp.

C. Testing the model for χeff

The measurements of χeff presented in Sec. III B over a
wide range of packing fraction f, sample aspect ratio γg, and
particle aspect ratio γp now allow us to test the model of
Eq. (3). In Eq. (3), the demagnetization factors Dg and Dp

are functions of sample and particle geometry, respectively.
To fit parameters, we assume that both Dg and Dp follow
power laws of the form D ¼ Aγn as shown in Fig. 3 for single-
piece solid magnets.12 Inserting this form into Eq. (3) with dif-
ferent fit parameters for Dg and Dp yields our fit function

χeff ¼
f

Apγ
np
p (1� f)þ Agγ

ng
g f

: (7)

We simultaneously least-squares fit all our suspension data
shown in Figs. 8 and 9 and the dry aligned cylinder data in
Fig. 10 to Eq. (7) to obtain the fit parameters Ag, ng, Ap, and
np. Input errors correspond to the same errors plotted in Sec.
III B. Plots of Eq. (3) with these fit parameters are shown in

Figs. 8–10, where it is seen that the model captures the
trends of χeff in f, γg, and γp, respectively. Using the input
errors on the data from Sec. III B results in a reduced
Chi-squared of 1.1, indicating that the model function is as
good as can be obtained with our uncertainty. The
root-mean-square difference between the data and the model
is 13%, corresponding to the uncertainty, we can put on the
model predictions using fit parameters from our data. This
13% variation is close to the 11% systematic difference
between the dry granular samples and suspensions in Fig. 8.
This and the fact that the model was also fit to the dry parti-
cles data in Fig. 10 indicates that both dry granular materials
and suspensions can be self-consistently described by
the same function within this 13% error. The best fit parame-
ters for Eq. (7) are Ag ¼ 0:33+ 0:07, ng ¼ �1:11+
0:08, Ap ¼ 0:147+ 0:005, and np ¼ �4:4+ 0:2. The best
fit values of Ag and ng are consistent with the fit values A ¼
0:31+ 0:01 and n ¼ �1:12+ 0:02 from the single-piece
cylinder data of Chen et al.12 in Fig. 3, confirming that Dg in
Eq. (3) is consistent with the demagnetization factor D of
individual cylindrical particles.10 This agreement of values
for different particle shapes (e.g., spheres and cylinders) sug-
gests the values we found for Ap and np also apply to parti-
cles of different shapes aligned with the applied magnetic
field within the 13% error.

To compare to previous work in Fig. 9, we show numer-
ical simulation results of randomly packed spherical particles
at f ¼ 0:4.10,14 The simulation data are in reasonable agree-
ment with the model.

An alternate model by Martin et al. for χeff was pro-
posed that does not account for the demagnetization effect,
but is designed for the limit of high packing fraction f.15 It
assumes that magnetic field lines tend to go from one ferro-
magnetic particle to another along regions of high suscepti-
bility, and thus concentrate their density in paths along the
shortest distances between particles. It predicts that χeff
diverges at a packing fraction fc where the gaps between
neighboring magnetic particles go to zero according to

χeff �
1

1� f=fcð Þ1=3
� 1, (8)

until it approaches the material susceptibility χ.15 The value
of fc ¼ 0:74 suggested by Martin et al.15 is unrealistically
large for the packing fraction where the nearest-neighbor par-
ticles in a randomly arranged suspension just barely touch
each other.16 A more realistic value for fc corresponds to the
jamming transition, which has a much smaller value for
random arrangements of particles than for crystalline
packings.17–19 Our suspensions of spherical particles have a
jamming transition at fc ¼ 0:407, measured as the lowest
packing fraction where the samples exhibit a non-zero yield
stress like a solid.7 We observe in Fig. 8 that χeff does not
diverge to reach the material susceptibility at fc ¼ 0:407.
This is consistent with the observations of Martin et al.,15

who also did not observe any evidence of a divergence.
Furthermore, Fig. 10 shows χeff , 100 � χ even in the limit
of f � 1, indicating that the divergence to the material sus-
ceptibility χ does not exist for any value of packing fraction.

FIG. 10. Effective susceptibility χeff of packings of cylindrical rods forced
to be aligned with the applied magnetic field as a function of particle aspect
ratio γp, with f � 100%. Values of γg are given in the legend. Lines: model
result of Eq. (7) for γg ¼ 11 (dashed line) and γg ¼ 20 (solid line), where fit
parameters are obtained from simultaneously fitting data of Figs. 8–10. The
simultaneous fits here and in Figs. 8 and 9 confirm the validity of Eq. (7)
within a root-mean-square difference of 13%.
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This model of Martin et al.15 also fails to explain the depen-
dence of χeff on sample aspect ratio γg shown in Figs. 8 and
9. That model treats χeff as a bulk property that does not
depend on sample shape or size. The dependence of χeff on
γg rules out the possibility of χeff being a bulk property. On
the other hand, this leveling off of χeff at a value much lower
than the bulk susceptibility χ conforms with expectations of
the demagnetization effect, similar to single-piece solid
magnets. According to the model of Skomski et al.,1 χeff is
limited both by the order of the sample aspect ratio γg and
particle aspect ratio γp. This limitation from the demagnetiza-
tion effect also explains why the divergence of χeff in f pre-
dicted by the model of Martin et al.15 cannot be achieved for
small aspect ratio particles. These agreements of the data in
Figs. 8–10 with Eq. (3) and disagreement with the model of
Martin et al.15 confirms the importance of the demagnetiza-
tion effect in suspensions. As a result, the model of Skomski
et al.1 expressed in Eq. (3) with the fit coefficients obtained
here more accurately describes χeff (f, γg) for suspensions of
spherical particles than the model of Martin et al.15

D. Effect of particle misalignment

In Sec. III C, we tested the model of Eq. (3) for particles
aligned with the applied magnetic field, which was an
assumption of the model of Skomski et al.1 However, this is
not a very practical case for suspensions of aspherical parti-
cles, as they tend to have randomly arranged and oriented
particles. To characterize how particle misalignment affects
χeff , we made suspensions of cylindrical particles. We pur-
chased iron wire (Goodfellow) and cut it to make cylindrical
particles with different particle aspect ratios γp. To obtain
samples with enough particles to avoid significant finite size
effects, while minimizing the number of cuts we needed to
make, we used different wire diameters of 0:25, 0.5, and 1
mm for samples with mean particle aspect ratio γp . 10,
5 � γp , 10, and γp , 5, respectively. For samples of
aspect ratio γg ¼ 4:1 and length L ¼ 42 mm, this results in
the ratio of sample diameter to cylinder diameter between 17
and 9, and the ratio of sample diameter to mean particle
length between 4.1 and 2.5. This is a parameter range where
the value of the packing fraction fc of the liquid-solid transi-
tion is within 4% of the infinite-size system limit.20,21 Effects
of confinement on alignment are also presumed to be small in
this system-size range. For example, in this range, the partial
particle alignment from this confinement changes the bulk rhe-
ology by less than 3%,21 but to our knowledge, the effect on
χeff from this confinement has not been characterized.

Since sample preparation procedures can affect the align-
ment of particles, we also characterize the tendency for the
particles to align based on different shaking procedures after
the sample was loaded into the cell, but before the magnetic
field was applied. We used a suspension with sample aspect
ratio γg ¼ 4:1, sample length L ¼ 42 mm, and particle aspect
ratio γp ¼ 5:3, at a packing fraction f=fc ¼ 1:02. This
packing fraction is just barely resolvable to be above the
liquid-solid transition, so we can observe the alignment of
the particles as they poke out the liquid-air interface. In one
case, samples were shaken along the axis of the cylindrical

tube to partly align the particles with the external magnetic
field, shown in Fig. 11(b). In a second case, the same
samples were shaken with a combination of linear and rota-
tional shaking (Vortex Genie 2), resulting in a more random
alignment, shown in Fig. 11(c) for the same sample parame-
ters. Note the alignment in the bulk could be quantitatively
different from a value based on the particles at the boundary,
so these pictures at the surface of the sample should be taken
as a coarse characterization of the alignment of particles.
These images were analyzed to measure the angle β of each
particle relative to the applied magnetic field, which was
aligned with the cylindrical tube axis. Figure 11(a) shows
the probability distribution P(β) for both of these samples.
For samples shaken by the vortex mixer, we observe a rela-
tively flat distribution, with a mean angle kβl ¼ 44:7	 corre-
sponding to a random alignment. Samples shaken along the
axis direction, while still fairly random, display a preferred
alignment angle β ¼ 20	 and a mean kβl ¼ 27:3	, corre-
sponding to better alignment with the applied magnetic
field at β ¼ 0	.

Now, we systematically test trends in effective suscepti-
bility χeff as a function of particle aspect ratio γp for suspen-
sions of randomly arranged particles. The measured χeff is
shown as a function of γp in Fig. 12, at a fixed relative
packing fraction f=fc ¼ 1:02 (where fc is the packing frac-
tion of the liquid-solid transition), γg ¼ 4:1, L ¼ 42 mm, and
for both shaking procedures. The error bars on γp indicate
the standard deviation of the aspect ratio due to the distribu-
tion of particle lengths in each sample. The reason for com-
paring different shapes at a fixed ratio of f=fc is that
different shapes have different values of fc

20,21 (values of fc

for each aspect ratio are reported in the Appendix) and the
range of packing fractions in the liquid range varies up to fc.
A fixed relative packing fraction f=fc � 1 is near the
maximum χeff expected in the liquid phase for each γp, as
seen in Fig. 8. Any smaller value of χeff could be obtained
with the same particles at a lower packing fraction.

FIG. 11. (a) Probability distribution of particle alignment angles β relative
to the applied magnetic field, for samples with length L ¼ 42 mm, sample
aspect ratio γg ¼ 4:1, particle aspect ratio γp ¼ 5:3, and packing fraction
f=fc ¼ 1:02. Solid squares: samples were shaken along the axis of the
cylindrical tube to partly align the particles with the external magnetic field.
Open diamonds: samples were shaken using a vortex mixer, resulting in a
more random alignment. Pictures of the samples for the 2 shaking procedures
are shown in panels (b) and (c), respectively, where the applied magnetic
field is aligned in the vertical direction.
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To test how the model developed for particles aligned
with the applied magnetic field applies to randomly arranged
particles, the model prediction of Eq. (7) is shown for com-
parison in Fig. 12. We use the fit parameter values obtained
from the simultaneous fit of data in Figs. 8–10 and the power
law fit expression for fc from the fit in Fig. 14 in place of f
in Eq. (7). The model overestimates χeff by about a factor of 4,
in this case, where the particles are not aligned with the
applied magnetic field. Since that model fit well to data for
aligned particles, this indicates the random alignment severely
reduces χeff . χeff is comparable to the value for spheres, which
suggests the demagnetization effect may be about as significant
for randomly arranged long cylinders as it is for spheres. It
seems likely that the random orientations result in different
effective demagnetization factors for different particles that
average out to a value of Dp close to that for spheres. The
much larger χeff obtained in Fig. 10 for large γp is apparently
possible only because the strict alignment of the particles with
the applied magnetic field reduces the demagnetization effect.

The trend of higher χeff with better aligned particles is
also seen in our samples with different shaking procedures:
the better aligned particles that were shaken along the cylin-
der axis had a consistently 20% higher χeff than the more
randomly arranged particles that were shaken by the vortex
mixer. A simple quantitative estimate of the average vector
component of alignment cos kβl is also 20% higher for the
particles shaken along the cylinder axis then those shaken by
the vortex mixer. It suggests, at least in the ballpark, the
decrease of χeff in Fig. 12 may be associated with the change
in particle alignment for these two samples of randomly
arranged particles. However, extrapolating this simple esti-
mate does not reach the model of Eq. (7). This suggests that
much better alignment would be needed to reach that regime
than is likely to be obtained in suspensions with even par-
tially randomly arranged particles.

While there is little trend in χeff over the range of γp
measured in Fig. 12, it is notable that χeff exhibits a local
maximum in γp. In contrast, Eq. (7) predicts χeff to be a
monotonically increasing function of γp (as seen in Fig. 10).
This local decrease in χeff with γp is not due to the different
wire diameters used, as in the range 5 � γp , 10 where χeff
decreased, the same diameter wires were used. Similarly,
finite-size effects cannot explain the peak, as the number of
particles is decreasing over the same range of γp, which
would only be expected to produce more alignment and a
larger χeff , in contradiction to the trend observed in χeff . It
could also be proposed that the local peak in χeff (γp) could
be due to a competition between the increasing χeff in Eq. (7)
and the decreasing fc with γp. However, as shown in
Fig. 12, the model of Eq. (7) still has no local maximum in
this parameter range—even when accounting for this
decreasing fc with γp. This insensitivity to f in the model is
apparent in the limit of large γp of Eq. (3), which becomes
χeff � 1=Dg, independent of f. The cause of this local
maximum in χeff (γp) remains unknown.

The data in Fig. 12 were taken at f=fc ¼ 1:02, corre-
sponding to a jammed state where particles were not free to
realign in the applied magnetic field. If instead particles were
at a lower packing fraction in a liquid state, they might be
expected to be able to more freely and better align with the
applied magnetic field to reach the higher χeff predicted by
Skomski et al.1 To test this hypothesis, we measured χeff as a
function of packing fraction f for cylinders. We used 0.5
mm diameter wire cut to length 3.2 mm with a standard devi-
ation of 0.6 mm to obtain a particle aspect ratio
γp ¼ 6:3+ 1:3, near the peak found in Fig. 12. We started
with a sample aspect ratio of γg ¼ 4:1+ 0:3 at f ¼ 0:42 in
a 10.2 mm diameter tube and diluted the sample with more
liquid to increase f. The sample aspect ratio decreased to 3.8
as the liquid-solid transition was crossed and the suspension
packed more efficiently, without trapped air. Upon further
dilution, the sample aspect ratio increased in inverse propor-
tion to the packing fraction due to the increase in liquid
volume. Because the signal was weaker at these lower fre-
quencies, the calibration of εnoise was done with more preci-
sion by measuring induced voltage separately before each
data point with the current source outputting at the frequency
and applied current of the data point but without a sample.
The plateau where χeff was independent of frequency
occurred for f , 200 Hz for these cylinders, so the reported
χeff was obtained from a weighted average of data in that
range.

Values of χeff for these particle aspect ratio γp ¼ 6:3 cyl-
inders are shown as a function of packing fraction f in
Fig. 13. We only report χeff for samples shaken in the vortex
mixer, as samples shaken vertically to intentionally align par-
ticles showed an increase in χeff of typically 20%, as found
in Fig. 12. χeff increases with f for cylinders as it does for
spheres for f , fc. We do find a decrease in χeff as f
increases above fc, as expected due to the inability of parti-
cles to rearrange for f . fc. The prediction of Eq. (7) for
aspect ratio γp ¼ 6:3 is shown as the solid line in Fig. 13.
The prediction is again well above the data, by a factor of 3
or more. A correction for the variation of sample aspect ratio

FIG. 12. Effective susceptibility χeff of suspensions with randomly aligned
particles as a function of particle aspect ratio γp, at γg ¼ 4:1 and
f=fc ¼ 1:02. Solid squares: samples were shaken beforehand along the axis
of the tube to partly align the particles with the external magnetic field.
Open diamonds: samples were shaken beforehand using a vortex mixer,
resulting in a more random alignment. Solid circle: random packing of
spheres (γp ¼ 1), which cannot align or misalign. Solid line: model of
Eq. (7). The model overestimates χeff by about a factor of 4 for suspensions
that are misaligned with the external magnetic field.
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γg from the dilution according to Eq. (7) would not increase
χeff by more than 10% for any data point, not nearly enough
to match the prediction shown in Fig. 13. The disagreement
with prediction confirms that even in the liquid state, the
random arrangement and orientation of particles in suspen-
sion produces a strong demagnetization effect even for large
particle aspect ratios, precluding the larger χeff predicted by
Skomski et al.1

For comparison to spherical particles, we also plot the
prediction of Eq. (7) for aspect ratio 1 as the dotted line in
Fig. 13. While the aspect ratio γp ¼ 6:3 particles do not
reach the large χeff predicted by Skomski et al.,1 they at least
have a slightly higher χeff than spheres and reach up to
χeff ¼ 4:5 at the highest packing fraction of the liquid state
(f ¼ 0:39), the largest χeff we have found of any combina-
tion of parameters in suspensions.

Since these measurements are all performed in static
flows, we comment on what level of alignment might be
expected in our desired application of turbulent flow. We
hypothesize that particle will align with the magnetic field if
the field-dipole stress τB is the strongest stress acting on the
particles. In our measurements, we estimate this to be τB ¼
χeff μ0H

2
app=[2(1þ χeff )] ¼ 0:016 Pa at our maximum field

strength and effective susceptibility (where μ0 is the perme-
ability of a vacuum). In contrast, we estimate the gravitational
stress on our cylindrical particles Δρga to be between 1.3 Pa
and 4.2 Pa for our cylindrical particles (where g is the accel-
eration of gravity, Δρ is the density difference between parti-
cles and liquid, and a is a relevant dimension of the cylinder
depending on its orientation), suggesting the cylindrical parti-
cles likely settle in our measurements of χeff . That could
explain why the measurements of χeff do not agree with the
model of Eq. (7), as the settling may make it harder for the
particles to align better with the applied magnetic field. At
the magnetic field strength of the Cadarache dynamo, τB ¼ 5
Pa,4 while we would expect to need a turbulent shear stress
of at least τU ¼ 0:02ρU2 ¼ 35 kPa to achieve such a
dynamo with our suspensions (where ρ is the particle density
and U is a typical flow velocity).7 Thus, in the turbulent flow
experiments that we would like to use such suspensions, the
turbulent shear stress is expected to be dominant and would be
expected to cause the particles to follow eddies and arrange
randomly as long as the particles are smaller than most of the
eddies. This would still be expected to result in lower χeff than
the model prediction, as found in Figs. 13 or 12.

IV. SUMMARY

In this paper, we reported measurements of the effective
magnetic susceptibility χeff of suspensions in the limit of
weak applied magnetic fields as a function of packing frac-
tion f, sample aspect ratio γg, and particle aspect ratio γp.
For spherical particles, or for non-spherical particles aligned
with the applied magnetic field, we find the model of
Skomski et al.1 can be fit with power laws for the demagnet-
ization factors Dg and Dp describing the aspect ratio depen-
dence of the sample and particles, respectively, in the form
of Eq. (7) (Figs. 8–10). Over the range 0 � f � 0:407 (up to
the liquid-solid transition fc), 2:5 � γg � 32, and
1 � γp � 20, the fit was accurate within a root-mean-square
difference of 13%. This fit yields Dg ¼ 0:33γ�1:11

g , consistent
with values obtained for single-piece cylindrical solids over a
smaller parameter range12 and Dp ¼ 0:15γ�4:4

p . The agree-
ment with the model for different particle shapes suggests
the model can account for the demagnetization effect for dif-
ferent particle shapes, even though it was originally derived
only for ellipsoids. Since the model parameters were self-
consistently fit to particles of different shapes (i.e., spheres
and cylinders) as well as dry granular materials, then the
same model parameters apply for a variety of particle shapes
and with or without liquid within the 13% error. Due to its
characterization of the demagnetization effect, the model
Skomski et al. expressed in Eq. (7) with the fit coefficients
obtained in Figs. 8–10 more accurately describes χeff (f, γg)

FIG. 13. Effective susceptibility χeff as a function of packing fraction f for
particle aspect ratio γp ¼ 6:3 cylinders. Solid line: model of Eq. (7) for
γp ¼ 6:3. Dotted line: model of Eq. (7) for spheres (γp ¼ 1). Vertical dashed
line: the packing fraction of the liquid-solid transition. The model still over-
estimates χeff by a factor of 3 or more for suspensions of randomly aligned
cylinders, regardless of whether they are in a liquid or solid state.

FIG. 14. Packing fraction of the liquid-solid transition fc as a function of
particle aspect ratio γp. Solid symbols: suspensions of cylinders. Open
symbol: suspension of spheres. Dashed line: power law fit to data for
cylinders.
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for suspensions of spherical particles than the model of
Martin et al.15

For non-spherical particles aligned with the magnetic
field, the model of Skomski et al. successfully predicted that
the demagnetization effect would be weaker and the bulk
susceptibility could be reached in the limit of large aspect
ratio γp and sample aspect ratio γg.

1 However, this was only
found to apply to suspensions if we manually forced the par-
ticles to be aligned (Fig. 10). In realistic suspensions of ran-
domly oriented particles, we found χeff � 4 in the limit of
large γp, and the largest effective susceptibility we found was
only χeff ¼ 4:5, for cylinders of particle aspect ratio γp ¼ 6:3
and sample aspect ratio γg ¼ 4:1 (Fig. 12). This χeff is only
10% higher than for spheres,15 indicating only a modest
improvement in χeff when using large aspect ratio particles.
The model prediction overestimates the measured χeff by a
factor of 3 or more in the cases we tested (Figs. 12 and 13).
This disagreement is the result of the random orientations of
particles in dense suspensions (Figs. 11–13), which is not
accounted for in the model. The random orientations of parti-
cles likely enhance the demagnetization effect. Accounting
for the misalignment of particles would lead to a more com-
plete model for χeff . The dependence of χeff on the alignment
of particles (Figs. 11 and 12) means that χeff can vary with
different packing procedures and in different flow fields for
non-spherical particles and is not just a function of f, γp,
and γg. We also observed that χeff (γp) displays a local
maximum at γp � 5 for γg ¼ 4:1 (Fig. 12). Since it was pre-
dicted that the maximum χeff would increase monotonically
with γp,

1 this feature was unexpected and remains
unexplained.

Since we performed measurements of χeff in the linear
material response limit, it is worth mentioning how these
results apply to other regimes. We note that the more exact
expressions of Eqs. (1) and (2) should still be used instead of
Eq. (3) in cases where χeff approaches χ. Since we found χeff
no larger than about 4, then the situation where χeff
approaches χ is not likely for good ferromagnetic materials
unless much larger χoff are found. On the other hand, for
large magnetic field strength when the magnetization
becomes saturated, the material susceptibility χ becomes
smaller. In such a case, the same demagnetization factors Dp

and Dg are still expected to apply at different H, since the
former are functions of geometry, while the latter is a mate-
rial property. For ferromagnetic materials whose linear sus-
ceptibility χ is on the order of 103, the non-linear
susceptibility would not make a dominant contribution to the
value of χeff until applied magnetic fields reach the order of
102 to 103 times the saturation field strength for values of
χeff on the order of 1 to 10. Such high values of applied mag-
netic field can still give the same result of the linear response
region because the demagnetization effect greatly reduces the
local magnetic field inside the particles.

Another prediction based on the model of Martin et al.15

that χeff would diverge to approach the material susceptibility
χ at the packing fraction fc where particles come into
contact also fails dramatically, as we observe only χeff � 4 in
the limit of fc at the liquid-solid transition (Fig. 8). The
demagnetization effect again limits χeff and prevents such a

divergence of χeff at any f for spherical particles, which was
not accounted for in the model of Martin et al.15

The failures to achieve the predicted χeff approaching χ
for large particle aspect ratio γp or large packing fraction f
may limit applications of magnetic suspensions, as χeff � χ
would have allowed for much stronger magnetic responses of
suspensions, comparable to large-aspect ratio ferromagnetic
materials. Rather, these results suggest that suspensions of
spherical particles have nearly the χeff as large aspect ratio
rods, and the modest improvement of 20% achieved for a
specific aspect ratio of rods may not be worth the added com-
plications of dealing with the added variable of particle
alignment in many applications. Nonetheless, there is a sig-
nificant range of tunable magnetic properties of magnetic
suspensions up to χeff � 4, several orders of magnitude
stronger than pure paramagnetic fluids, which typically have
χ in the range of 10�9 to 10�4. The viscosity is also tunable
over several decades, and the linearity of the magnetic
response without hysteresis, like paramagnetic materials, can
also be desirable for simple control.7
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APPENDIX: VALUES OF fc FOR DIFFERENT
PARTICLE ASPECT RATIOS

To compare χeff for particles of different shape in a
meaningful way requires identifying the packing fraction of
the liquid-solid transition fc for each shape. fc was mea-
sured for each particle aspect ratio γp by observing the
change in surface reflectivity as the particles poked through
the liquid-air interface of the suspension when f . fc. It
has been confirmed that this gives the same result as more
traditional methods such as measuring a yield stress.22 This
transition is sharp and easily observed, allowing us to
measure it with an uncertainty on fc of +0:01. fc is plotted
as a function of particle aspect ratio γp in Fig. 14. The hori-
zontal error bars indicate the standard deviation of particle
aspect ratios due to the variation in cut particle lengths. The
measured fc decreases with increasing γp for cylinders, con-
sistent with previous results.23 For later input into models, a
power law is fit to fc for cylinders, yielding
fc ¼ 0:62γ�0:22

p . For comparison, we also plot fc for the
spherical particles used in earlier sections in Fig. 14. The
value of fc for the spheres does not follow the same trend as
the cylinders, not only because of the particle shape, but also
the different material source may subtly affect interparticle
interactions that can have a significant effect on fc.
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