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Abstract. This paper reports measurements of Reynolds numbers Rp
e

corresponding to the turnover time of thermal excitations (‘plumes’) and Rω
e

corresponding to the twisting-oscillation period of the large-scale circulation
(LSC) of turbulent Rayleigh–Bénard convection over the Rayleigh-number range
2 × 108 � R � 1011 and Prandtl-number range 3.3 � σ � 29 for cylindrical
samples of aspect ratio Γ = 1. For R < R∗ � 3 × 109 both periods, and
hence both Reynolds numbers, were the same and scaled as Re ∼ Rγeff with
γeff � 0.45 < 1/2. Here both the σ- and R-dependences were quantitatively
consistent with the Grossmann–Lohse (GL) prediction. For R > R∗ the results
could be represented by Rp

e = 0.138 σ−0.82R0.493 for the plume turnover time
and Rω

e = 0.17 σ−0.81R0.480 for the twisting oscillation, both of which differ
significantly from the GL prediction as well as from each other. A relatively sharp
transition at R∗ to the large-R regime and the separation of the two Reynolds
numbers from each other suggest a qualitative and sudden change that renders
the measured quantities inapplicable to the GL prediction.

Combining Rp
e and previously reported measurements of the Nusselt number

N yielded the kinetic energy-dissipation εu = (N − 1)R/σ2 as a function of Rp
e.

For R � R∗ these results were in excellent agreement with the corresponding
GL prediction, and both approached closely to the (Re)3-dependence that is
expected at large Re where the bulk contribution to εu dominates. For R > R∗

the data were consistent with εu ∝ (Re)8/3. This differs from the expected large-
Re behavior and suggests that Rp

e no longer is the Reynolds number relevant
to εu.
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1. Introduction

Understanding turbulent Rayleigh–Bénard convection (RBC) in a fluid heated from
below [1] remains one of the challenging problems in nonlinear physics. It is well
established that a major component of the dynamics of this system is a large-scale
circulation (LSC) [2]–[10]. The LSC plays an important role in many natural phenomena,
including atmospheric and oceanic convection [11] and convection in the outer core of
Earth [12] where it is believed to be responsible for the generation of the magnetic field.

In this paper we consider cylindrical samples of aspect ratio Γ ≡ D/L � 1 (D is the
diameter and L the height). For these the LSC consists of a single convection roll over
a wide range of parameters, with both down-flow and up-flow near the side wall but at
azimuthal locations θ that differ by π. From a theoretical viewpoint [13] it is desirable
to describe its rate of circulation by a single Reynolds number, for instance by

RLSC
e ≡ 2L2

T ν
, (1)

where T is a spatially independent turnover time and ν the kinematic viscosity. No
direct measurements of T seem to exist, but T has been inferred from more localized
velocity measurements. For instance, the time-averaged maximum velocity vmax that is
observed [14, 15] more or less near the region (sometimes known as the ‘mixing zone’ [4])
between the viscous boundary layers and the bulk of the system, combined with L as

doi:10.1088/1742-5468/2007/10/P10005 2

http://dx.doi.org/10.1088/1742-5468/2007/10/P10005


J.S
tat.M

ech.
(2007)

P
10005

Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection

the appropriate length scale, was used to obtain [15] Rvmax
e ∝ vmaxL/ν. For rigid-body

rotation (but not necessarily for a more complex LSC), Rvmax
e is proportional to RLSC

e

with T ∝ L/vmax. Alternatively, the slope γu in the sample interior away from the mixing
zone of the time-averaged horizontal component u of the LSC velocity as a function of the
vertical position along the sample axis was combined with L to infer an LSC turnover time
and a Reynolds number Ru

e = γuL
2/ν (similar measurements were made also of the vertical

velocity component along a diameter in the horizontal mid-plane of the sample) [7, 16].
An interesting dynamical-systems property of the LSC is a twisting azimuthal

oscillation mode with frequency f0 = ω0/2π that will be discussed in detail below
in section 3.1. A torsional oscillation mode has been observed in the sun [17], and
torsional oscillations in Earth’s core are believed to cause variations in the length of
the day [18]. In laboratory convection experiments, the spatial nature of this mode has
become apparent only recently [8, 19], and the existence and characteristics of the mode
were confirmed and extended to larger Rayleigh numbers in a recent paper [20]. Although
its geometrical features long remained unclear, its frequency may have been observed or
measured much earlier in a number of single-point determinations of the temperature
or the velocity [21, 4, 5], [22]–[24], [7, 14, 16, 15, 25], both of which have an oscillatory
contribution from the twisting mode provided the probe is not located in the horizontal
mid-plane of the sample where the amplitude of this mode vanishes [20]. Some of the
single-point measurements yielded results for f0 that were equal to other estimates of 1/T
within experimental resolution [16]. The reason for this equality is not known at this
time, but it suggests that the Reynolds number

Rω
e ≡ 2L2f0

ν
(2)

is equal to RLSC
e . However, some other experimental investigations indicated that

there is a distinct difference between the R-dependence of Rvmax
e data obtained from

velocimetry measurements of vmax and the Rω
e results based on oscillation-frequency

determinations [15]. Although there is no solid evidence that the single-point
measurements of coherent oscillations pertain to the twisting oscillation mode, the fact
that both are coherent and have the same frequency suggests that they are probably
related.

An additional important component of the dynamics is the generation of localized
volumes of relatively hot or cold fluid, known as ‘plumes’, at a bottom and a top thermal
boundary layer [26, 21]. The hot (cold) plumes are carried by the LSC from the bottom
(top) to the top (bottom) of the sample and by virtue of their buoyancy contribute to
the maintenance of the LSC. The local vertical plume speed vp was measured by several
investigators by determining the transit time of temperature fluctuations between two
vertically separated but closely spaced temperature probes [3, 4, 22, 27, 28]. By a similar
technique, but using a single temperature sensor or two sensors on opposite sides of the
sample, the plume turnover time Tp was determined from peaks in time auto-correlation
or cross-correlation functions of the temperature signals [29]. The plume circulation can
then be characterized by a Reynolds number

Rp
e ≡ 2L

Tp
. (3)
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One might hope that the Reynolds number R
vp
e based on the local vp would be equal to

the global Rp
e given by equation (3), but this need not be the case. Quite remarkably,

the measurements indicate over a wide parameter range that Rvmax
e = Ru

e = Rp
e = R

vp
e

within fairly small experimental errors. This can be interpreted to mean that the plume
circulation is accurately slaved to the LSC, or vice versa, and that all of these quantities
yield an accurate representation of RLSC

e .
A central prediction of various theoretical models [1], [30]–[32], [13, 33] is the

dependence of Re(R, σ) on the Rayleigh number

R =
βgΔTL3

κν
(4)

(here β is the isobaric thermal expansion coefficient, g the acceleration of gravity, and κ
the thermal diffusivity) and on the Prandtl number

σ =
ν

κ
. (5)

A recent prediction by Grossmann and Lohse (GL) [13], based on the decomposition of the
kinetic and the thermal dissipation into boundary-layer and bulk contributions, has been
in remarkably good agreement with many of the experimental results for RLSC

e (R, σ), Rω
e ,

and Rp
e in the parameter range where all three of these, so far as they have been measured,

agree with each other3. In that regime both the prediction and the experiment can be
described well by a power law Re ∝ Rγeff with a very slightly R-dependent effective
exponent γeff � 0.44. However, there also are some notable differences between the
predictions and some other measurements [15].

The present paper reports new measurements of Rω
e (R, σ) and Rp

e(R, σ) for R up to
1011 and 3.3 � σ � 29. For modest R, say R < R∗ � 3 × 109, there again is very good
agreement with the predictions of GL and with previous experimental results. However,
for R > R∗ the measurements reveal a relatively sudden transition to a new state of the
system, with a plume Reynolds number that is described well by

Rp
e = Re,0 σ−α Rγ (6)

with Re,0 = 0.138 ± 0.007, α = 0.82 ± 0.01, γ = 0.493 ± 0.002 and a twist-oscillation
Reynolds number

Rω
e = R′

e,0 σ−α′
Rγ′

(7)

with R′
e,0 = 0.17 ± 0.03, α′ = 0.81 ± 0.03, γ′ = 0.480 ± 0.006. These results differ both in

the σ-dependence and in the R-dependence from the GL prediction for RLSC
e . However,

they agree quite well with recent experimental results for Rp
e obtained by Sun and Xia [35]

in the range 7 × 1010 � R � 2 × 1012. If the GL model still correctly predicts the R-
dependence of RLSC

e in this parameter range, then the experimental results for Rp
e and Rω

e

suggest the existence of a new LSC state in which the plumes and the LSC are no longer
slaved to each other and where the twist oscillation of the LSC is no longer synchronous
with the LSC turnover time. The observation that Rp

e > RLSC
e would then indicate that

the plumes rise and fall more rapidly than the background flow of the LSC. However, as
has been suggested by others, [34, 35] it seems more likely that the LSC evolves into a

3 See, for instance [16] and [8], and references therein.
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more complex flow structure where its dynamics can no longer be described quantitatively
by a uniquely defined spatially independent Reynolds number. It is unclear at present
whether the difference between this state and the one at smaller R will be found in the
geometry of the flow, in the nature of the viscous boundary layers that interact with it, or
in the nature and frequency of plume shedding by the thermal boundary layers adjacent
to the top and bottom plates.

Another important aspect of the predictions is the dependence of the Nusselt number
(the dimensionless effective thermal conductivity)

N =
QL

λΔT
(8)

on R and σ (here Q is the heat-current density and λ the thermal conductivity). The GL
model [32, 13] provides a good fit also to data for N at modest R, say up to R � 1010 [36]–
[38]. Here we briefly mention as well measurements of N for larger R [38] that depart
significantly from the GL prediction as R approaches 1011 and that can be described well
by N ∼ R1/3.

Having obtained both Rp
e and N as a function of R, one can also examine the averaged

kinetic energy-dissipation εu = (N − 1)R/σ2 as a function of Rp
e . There is excellent

agreement with the GL prediction for εu when Rp
e � 2000 (R � 3 × 109). In that range

both the prediction and the data already have approached closely to the expected bulk-
dominated limit in which one expects εu ∼ R3

e. At larger Rp
e we find εu ∼ (Rp

e)
8/3. This

is inconsistent with the expected large-Re behavior and provides further evidence for a
breakdown of the characterization of the LSC in terms of Rp

e .

2. Apparatus and experimental methods

2.1. The samples

Measurements were made for three cylindrical samples with Γ � 1 [39] and known
as the small, medium, and large samples. They had L(D) = 9.52 (9.21), 24.76
(24.81), and 50.61 (49.69) cm respectively. As is evident from equation (4), a given
accessible range of ΔT will provide data over different ranges of R for the different L-
values. The small sample was used to determined Rω

e . It was filled with 2-propanol at
40.00 ◦C (σ = 28.9). The medium and large samples were filled with water, mostly at
mean temperatures Tm = 56.00, 40.00, and 28.00 ◦C corresponding to σ = 3.26, 4.38, 5.68
and ν = 5.15× 10−7, 6.69× 10−7, 8.42× 10−7 m2 s−1 respectively. For them both Rω

e and
Rp

e were measured. The top and bottom plates were made of copper. A Plexiglas side
wall had a thickness of 0.32 (0.63) cm for the medium (large) sample.

2.2. Methods of measurements

2.2.1. Small sample. In the small sample, observations of the motion of plumes across
the bottom and top plate were made by means of shadowgraph imagery [8, 20, 40]. The
oscillation frequency of the LSC, and from it Rω

e , was determined from the oscillations
of the path followed by the plumes as they were swept along laterally by the LSC just
above the bottom or just below the top plate. This method was discussed in detail in [8]
and [20].
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2.2.2. Medium and large sample. For the medium and large samples, three rows of eight
thermistors each, equally spaced around the circumference and labeled i = 0, . . . , 7
at heights 3L/4, L/2, and L/4 above the sample bottom, were imbedded in small
holes drilled horizontally into but not penetrating the side wall, as already described
elsewhere [29, 41, 20]. The thermistors were able to sense the adjacent fluid temperature
without interfering with delicate fluid-flow structures. Since the LSC carried warm (cold)
fluid from the bottom (top) plate up (down) the side wall, these thermistors detected
the location of the up-flow (down-flow) of the LSC by indicating a relatively high (low)
temperature.

To determine the orientation of the LSC, measurements with a sampling period
δt � 2.5 s were made, and the function

Ti = T0 + δ cos

(
iπ

4
− θ0

)
, i = 0, . . . , 7, (9)

was fitted, separately at each time step, to the eight middle-row side-wall thermistor-
temperature readings. As discussed elsewhere [42], equation (9) is an excellent
representation of the time-averaged azimuthal temperature profile. The fit parameter δ is
a measure of the temperature amplitude of the LSC and θ0 is the azimuthal orientation of
the plane of the LSC circulation. As defined here, the orientation θ0 is on the side of the
sample where the LSC is warm and up-flowing and is measured relative to the location of
thermometer zero. Orientations θt and θb and amplitudes δt and δb were calculated for
the top and bottom rows separately by the same method as for the middle row.

When a warm (cold) plume passed a given side-wall thermistor, the indicated
temperature was relatively high (low). Over a certain range of R it had been shown
before [16], by comparison of temperature sensors actually imbedded in the fluid and laser
Doppler velocimetry, that this thermal signature can be used to determine the speed, and
thus the Reynolds number Rp

e , of the plumes and that it yields the same result as actual
velocity measurements for instance of Ru

e . Indeed, where there is overlap, our results for
Rp

e are in satisfactory agreement with measurements [16] based on velocimetry.
From time series of the eight temperatures Ti(t) taken at intervals of δt � 2.5 s and

covering at least one and in some cases more than ten days at each of many values of R the
auto-correlation functions (ACs) Ci,j(τ), i = j, and the cross-correlation functions (CCs)
Ci,j(τ), i = 0, . . . , 3, j = i + 4 corresponding to signals at azimuthal positions displaced
around the circle by π were determined. They are given by

Ci,j(τ) = 〈[Ti(t) − 〈Ti(t)〉] × [Tj(t + τ) − 〈Tj(t)〉]〉. (10)

We show an example of ACs (circles) and of CCs (squares) in figure 1.

3. Experimental results

3.1. Twisting oscillations

The same oscillations that were observed in the small sample [8] were found also in the
medium and large samples. This was done by looking at time series of the LSC orientations
θt, θ0, and θb at the three different heights. An example of the time series for the three
rows is shown in figure 2 for R = 8.7 × 1010 in the large sample. While the orientation
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Figure 1. The CC (squares) between two thermometers (1 and 5) mounted on
opposite sides of the side wall, and the AC (circles) of a single thermometer (1),
on a logarithmic scale as a function of the delay time τ for the large sample and
R = 7.5 × 1010. Solid lines: fits of equation (11) to C11(τ) and of equation (12)
to C15(τ). The lengths of the lines indicate the range of the data used in the fits.

of each row contains erratic motion, there is a tendency for the top- and bottom-row
orientations to oscillate out of phase with each other around the middle-row orientation.
The frequency of this twisting oscillation was measured by fitting a Lorentzian function to
each peak of the power spectra of θt − θ0, θb − θ0, and θt − θb. Each of these three signals
gave the same peak frequency within experimental resolution. Correlation functions and
power spectra are shown in [20].

3.2. Plume turnover time

From figure 1 one sees that the ACs have a peak centered at the origin. It can be
represented well by a Gaussian function. The peak width indicates that the plume signal
retains some correlation over a significant time interval. A second smaller Gaussian peak
is observed at a later time tac2 that we identify with one turn-over time Tp of the plumes.
The existence of this peak suggests that the plumes retain some coherence while they
undergo a complete rotation. A further very faint peak is found at 2Tp, but is not used in
the analysis. These observations are consistent with previous experiments [4, 43, 16]. This
structure is superimposed onto a broad background that decays roughly exponentially
on a timescale of O(10Tp). We believe that the large background is caused by the slow
meandering of the azimuthal orientation of the LSC.

The CCs are consistent with the ACs. Here too there is a broad, roughly exponential,
background. There is no peak at the origin, and the first peak, of Gaussian shape,
occurs at a time delay tcc1 = Tp/2 associated with half a circulation period. A further
peak is observed at 3Tp/2, corresponding to 1.5 circulation periods. The fact that the
CC is negative indicates that the peaks are not simply due to plume circulation from
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Figure 2. The mean wind orientation calculated separately for the three planes
of thermistors at R = 8.7 × 1010 in the large sample. Red: bottom row. Purple:
middle row. Blue: top row. The top-row and bottom-row orientations were
observed to oscillate around the middle-row orientation.

which one would expect a positive correlation. A model due to Villermaux [44] invokes a
more intricate mechanism than simple plume circulation for the coherence of the plume
signal, resulting in the emission of plumes alternately from the top and bottom boundary
layers. This model suggests that a warm plume on one side of the sample is followed by a
cold plume on the opposite side, consistent with the negative correlation observed in the
measurements.

Based on the above, the equation

Ci,i(τ) = b0 exp

(
− τ

τ ac
0

)
+ b1 exp

[
−

(
τ

τ ac
1

)2
]

+ b2 exp

[
−

(
τ − tac2

τ ac
2

)2
]

(11)

was fitted to the data for the ACs, and the equation

Ci,j(τ) = −b0 exp

(
− τ

τ cc
0

)
− b1 exp

[
−

(
τ − tcc1

τ cc
1

)2
]

(12)

to those for the CCs. Examples of the fits are shown in figure 1 as solid lines. One sees
that they are excellent.

As an illustration of the statistical errors involved in the analysis, figure 3 shows
the results for t1 obtained by fitting equation (12) to data for Ci,j for one particular run
at R = 2.4 × 1010 and σ = 4.38. They yield a mean value of 71.3 s, with a standard
deviation σt1 = 1.5 s. The statistical errors for individual points are typically an order
of magnitude smaller. It is not clear if the scatter in the data of figure 3 may be due
to the turbulent fluctuations in the fluid which have not been averaged out completely
over the duration of the run, or to some systematic errors that depend on the azimuthal
orientation. Treating σt1 as a statistical uncertainty, one expects the mean over the eight
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Figure 3. Results for tcc1 from fits of equation (12) to the data for the temperature
CCs Ci,j for R = 2.43 × 1010 for the large sample. The standard error from each
fit is about as large as the data points in the figure. The much larger scatter
is attributable to the turbulent nature of the flow and the finite length of the
experimental time series.

CCs to have an uncertainty of about 0.6 s or 0.8% if the scatter is random. Indeed, the
Re/R

1/2 data for the large sample and a Prandtl number of 4.38 to be shown below
in figure 5(b) yield a mean value of 0.0347 with a standard deviation of 3.0 × 10−4

or 0.9%, consistent with the above analysis of the particular example represented by
figure 3.

To check that the fitting function equation (12) does not give a biased turn-over time
due to the large, decaying background, the same analysis was done on data from a sample
that was deliberately tilted relative to gravity. The tilt locks in a preferred orientation of
the LSC so that the warm fluid in the bottom boundary layer flows up-slope along the
bottom plate due to buoyant forces [29]. Similarly cold fluid in the top boundary layer
flows down-slope. This flow locking had the effect of strengthening the LSC and making
the temperature oscillations at a point more coherent so that the decay of the oscillations
in the correlation function is slower and can be detected for τ up to the duration of the
experiment. The long-term correlation makes it possible to obtain the plume turnover rate
from Fourier-transform methods. This is shown in figure 4. This value agreed with the
turnover time obtained from fitting equation (12) to the Ci,j from the same dataset within
the experimental resolution of 1% for several tilt angles up to 12◦, where the turnover time
is shorter than the level-sample value by about 20% [29]. This agreement confirms that
the background of the fitting function does not bias the measurement of the turnover
time.

3.3. Reynolds numbers

To obtain experimental measures of the plume-turnover Reynolds number Rp
e , the average

value of the half-turnover time 〈tcc1 〉 of the eight CCs Ci,j and Cj,i with i = 0, . . . , 3 and
j = i+4, and the average value of 〈tac2 〉 of the eight ACs Ci,i with i = 0 . . . 7 were computed
for each R. Substituting Tp = tac2 and Tp = 2tcc1 into equation (3), one gets

Rp,ac
e =

2

〈tac2 〉
L2

ν
(13)
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Figure 4. (a) Results for C26(τ) for R = 1.1 × 1010 for the medium sample with
a tilt of 12◦. The correlation function becomes more coherent when the sample
is tilted. (b) The modulus of the Fourier transform FT (f) of C26(τ), revealing a
sharp peak corresponding to 1/T .

and

Rp,cc
e =

1

〈tcc1 〉
L2

ν
(14)

as two experimental estimates of Rp
e .

The results are shown in figure 5(a) as black circles for Rp,cc
e and green circles for

Rp,ac
e . Figure 5 shows excellent agreement between the ACs and the CCs, confirming that

the analysis method gives consistent results. The data for Rω
e from the small sample

deduced from the oscillation of the direction of plume motion across the bottom plate [8]
are shown as stars. These data are for 2-propanol with σ = 28.9. For comparison, the
results of Qiu and Tong [16]4 for Ru

e based on velocity measurements using water with
σ = 5.4 are shown as plusses. They fall near our data for σ = 5.55, showing the agreement
between Rp

e and Ru
e for this range of R. The dashed lines in figure 5 are, from top to

bottom, the predictions of GL [13] for σ = 3.32, 4.38, and 5.55.5 For R < R∗ � 3 × 109

they pass very well through the data. We regard this agreement of the prediction with
the measurements as a major success of the model. A significant departure from the GL
prediction is that for R > R∗ the data for the reduced Reynolds number Re/R

1/2 scatter
randomly about the horizontal solid lines, indicating that the exponent of the power-law

4 The data points of Qui and Tong [16] at their largest R-values correspond to values of ΔT approaching 60 ◦C
and may be influenced by non-Boussinesq effects. In addition, they were taken at a somewhat higher mean
temperature than the others (Qiu, private communication) and thus correspond to a σ-value somewhat smaller
than 5.4.
5 We changed the parameters of the GL model to read c1 = 10.16, c2 = 1.832, c3 = 0.478, c4 = 0.0141, a =
0.464, Rec = 0.925 to fit our Rω

e data for σ = 28.9. This gives a better fit to our Re data and does not alter the
prediction for N (R,σ) [13].
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Figure 5. Reduced Reynolds numbers in the form of Re/R
1/2 for high-resolution

plots on log-linear scales. (a) Rp,cc
e (black symbols) and Rp,ac

e (green symbols) for
σ = 4.38 (circles), σ = 5.55 (up-pointing triangles), and σ = 3.32 (down-pointing
triangles). Crosses: Ru

e from [16], σ � 5.4. Dashed lines (from top to bottom):
GL predictions for σ = 3.32, 4.38, 5.55, and 28.9. Stars: Rω

e for 2-propanol at
40 ◦C, σ = 28.9. (b) Rp,cc

e (black symbols) and Rω
e (red symbols) for σ = 4.38

(circles), σ = 5.68 (up-pointing triangles) and σ = 3.26 (down-pointing triangles).
Dashed lines (from top to bottom): GL predictions for σ = 3.26, 4.38, 5.68.
(c) Higher-resolution plot of all the Reynolds numbers for σ = 4.38, with symbols
as in (a) and (b). For all plots the open symbols are for the medium sample and
the solid symbols for the large sample.
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Figure 6. The reduced Reynolds number Rp,cc
e /(σ−αRγ) as a function of R. Red

down-pointing triangles: σ = 3.26. Black circles: σ = 4.38. Blue up-pointing
triangles: σ = 5.68. Solid line: the fit coefficient Re,0. Crosses: Rp

e from figure 1
of [35].

scaling in R suddenly changed to about 1/2. At the largest R measured, the data are
about 15% higher than the GL prediction.

Figure 5(b) compares Rp,cc
e (black symbols) with the twisting-oscillation Reynolds

number Rω
e (red symbols). The data are for σ = 3.26, 4.38, and 5.68. These data were

taken from different runs than the data in figure 5(a), hence the slightly different values
of σ. The data for Rp,cc

e and Rω
e are in agreement within the resolution of the experiment

for R < R∗, which means that the frequencies f0 and 1/Tp are equal in this range. For
R > R∗, Rω

e is larger than the GL prediction but smaller than Rp,cc
e . This shows that

not only does the power-law scaling of the Reynolds numbers change at R∗, but the two
measures of the Reynolds number no longer give the same result above R∗.

The results shown in figures 5(a) and (b) are given in numerical form (tables A.1–
A.13) in the appendix. There we no longer distinguish between Rp,cc

e and Rp,ac
e and present

both as Rp
e .

The measured Rp,cc
e for R > R∗ were fitted by the combined power law given by

equation (6) for R > R∗ and 3.26 ≤ σ ≤ 5.68. This yielded Re,0 = 0.138 ± 0.007, the
Prandtl exponent α = 0.82 ± 0.01, and the Rayleigh exponent γ = 0.493 ± 0.002. The
Reynolds number is plotted in the reduced form Rp,cc

e /(σ−αRγ) in figure 6 to better see
deviations from the fit.

Data from Sun and Xia [35] for water with σ = 4.3 are also shown. These authors
obtained a frequency from the power spectrum of a temperature signal from a thermistor
inserted through the side wall at mid-height, and the Reynolds number was calculated
using the same normalization as in equation (13). At mid-height the twisting mode should
not be observable. Thus their measurements should be recording the plume motion and
their results should correspond to our Rp

e . The data from their larger cell had Rp
e ∝ R1/2,

in agreement with ours above R∗. Their smaller-cell data are consistent with our results
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Figure 7. The reduced twisting-oscillation Reynolds number Rω
e /(σ−α′

Rγ′
) as a

function of R. Red down-pointing triangles: σ = 3.26. Black circles: σ = 4.38.
Blue up-pointing triangles: σ = 5.68. Solid line: the fit coefficient R′

e,0. Reynolds
numbers 2L2/ντv (squares) and 2L2/ντ0 (crosses) from figure 16 of [45] are shown
as well. They correspond to the oscillation frequency of the horizontal LSC speed
(squares) and direction (crosses) near the top plate. Open diamonds: Reynolds
numbers 2L2f/ν corresponding to the oscillation of the velocity magnitude near
the side wall in the plume region from figure 8 of [15]; these data were taken with
various fluids with 3 � σ � 1200. The diamonds with dots inside correspond to
the reference [15] data obtained with water with 3 � σ � 5.5.

below R∗ and with the GL prediction. Sun and Xia suggest that the scaling change near
R∗ is due to a change in the LSC path-length as R changes. Their results also suggest
that R∗ for their samples may be somewhat higher than our R∗ � 3 × 109.

Niemela et al [28] measured the Reynolds number corresponding to the plume speed
using a pair of sensors with a slight vertical separation at the mid-height and near the
side wall of their container in the range 5× 106 < R < 1013. They fit a power law for the
scaling of Rp

e(R) to the data, and they reported an exponent of 1/2. However, they had
only about one data point per decade and so did not precisely determine how that scaling
exponent changed with R.

Similarly, the measured Rω
e was fitted by the combined power law given in equation (7)

for R > R∗ and 3.26 ≤ σ ≤ 5.68. This yielded R′
e,0 = 0.17 ± 0.03, α′ = 0.81 ± 0.03, and

γ′ = 0.480 ± 0.006. The data are plotted in reduced form Rω
e /(σ−α′

Rγ′
) in figure 7.

Xi et al [45] used particle-image velocimetry measurements of the horizontal flow
velocity and direction near the top plate of a water-filled cylindrical container. They found
an oscillation of the spatially averaged flow orientation which presumably is the twisting
oscillation (although the direction of flow near the bottom plate was not measured). The
period was taken to be the peak time τ0 of the AC of the flow orientation, from which
one can obtain a Reynolds number Rω

e = 2L2/ντ0. They also found an oscillation in the
magnitude of the horizontal flow speed, although it is unclear if this signal is due to the
twisting oscillation or the plume circulation. The period τv was found from the peak of
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Figure 8. Reynolds numbers from various sources, divided by the GL prediction.
Open circles: this work, medium sample, σ = 4.38. Solid circles: this work, large
sample, σ = 4.38. Stars: this work, small sample, 2-propanol, σ = 29.8. Plusses:
from figure 1 of [35], 100 cm sample, σ = 4.3. Crosses: from figure 1 of [35],
19.3 cm sample, σ = 4.3. Circles with crosses: from [16], σ = 5.4. Squares:
from [15], 5.6 ≤ σ ≤ 1206.

the AC of the flow speed, from which one can obtain a Reynolds number 2L2/ντv. The
Reynolds numbers corresponding to both sets of values from figure 16 of [45] are shown
in figure 7 for comparison with our data.

Lam et al [15] used laser Doppler velocimetry to measure the flow velocity in
cylindrical containers using various fluids covering a wide range of Prandtl numbers
3 � σ � 1200. The magnitude of the vertical flow velocity near the sidewall in the
plume region had an oscillation frequency f0 and Reynolds number 2L2f0/ν. These data
come from figure 8 of [15], and are shown in figure 7. Their data, obtained by using
alcohols covering a wide range of σ, do not agree with our σ-scaling. Lam et al pointed
out that a single scaling exponent did not work for the whole range of σ that they covered.

For a better comparison to the GL prediction, figure 8(a) shows Reynolds numbers
from various sources, divided by the GL prediction as a function of R, which clearly shows
the transition away from the GL prediction for R > R∗. Figure 8(b) shows some of the
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Figure 9. Normalized half-widths of Gaussian correlation-function peaks as a
function of R. Open circles: medium sample. Solid symbols: large sample.
Circles: τ cc

1 /tcc1 . Squares: 2τac
1 /tac2 . Diamonds: 2τac

2 /tac2 .

same data as a function of σ for R < R∗. The data from [15] for different fluids seem to
deviate from the GL prediction. For σ � 4 they are larger than the GL value and our data
by about 10%. For σ = O(103) they are lower than the GL value. It seems unlikely that
the parameters of the GL model could be adjusted so as to agree better with the high-
σRe data while maintaining agreement with extensive Nusselt-number measurements and
with the present Re-measurements at small σ. More measurements at large σ are clearly
needed.

3.4. Half-widths of the correlation-function peaks

The half-widths of the Gaussian peaks of correlation functions like those shown in figure 1
in principle contain information about the temporal distribution of plumes and thus should
be relevant to models of plume dynamics such as the one proposed by Villermaux [44].
Figure 9 gives half-widths τi normalized by corresponding peak times ti. We focus first on
the circles, which are for the ratios τ cc

1 /tcc1 derived from fits of equation (12) to the data
for the CCs. They do not reveal any R-dependence, indicating that the half-widths grow
with R at the same rate as the characteristic time tcc1 and thus as the Reynolds number
Rp,cc

e . The medium sample yields results that are about 20% larger than those from the
large sample. The reason for this modest but real difference is not known to us.

From fits of equation (11) to the data for the ACs one obtains both τ ac
1 and τ ac

2 . The
former is the half-width of the peak at the origin, i.e. at t = 0, and the latter is the peak
at time tac2 . As we saw in figure 5, the timescales tcc1 and tac2 differ by a factor of two
and yield the same values for the Reynolds numbers Rp,cc

e and Rp,ac
e when the definitions

equations (13) and (14) are used. This suggests that for a comparison with τ cc
1 /tcc1 it

is appropriate to use tac2 /2 as the timescale for the normalization. Therefore we show
2τ ac

1 /tac2 and 2τ ac
2 /tac2 as solid squares and diamonds respectively in figure 9. With this

normalization one sees that the half-widths of the ACs differ only very little from those
of the CCs. Perhaps even more surprising is that the peaks of the ACs at t = 0 have the
same half-widths within experimental resolution as the peaks at tac2 .
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Figure 10. The reduced Nusselt number N/R1/3 as a function of R for
σ = 4.38 [38]. Dashed line: GL prediction. Open circles: large sample. Solid
circles: medium sample. Open squares and triangles: two different runs for the
small sample containing water with σ = 4.38.

3.5. Nusselt number

It is interesting to note that a deviation of experimental results for the Nusselt number [38]
from the GL prediction was found at large R that is similar to that for the Reynolds
number. This is illustrated in figure 10 where we show the reduced Nusselt number
N /R1/3 as a function of R. There are deviations from the prediction [32] (dashed line)
for R � 1010, which is somewhat higher than the value of R∗ � 3 × 109 for the Reynolds
number. For R � 1010 one finds to a good approximation that N ∼ R1/3.

3.6. Kinetic energy-dissipation

From measurements of Re and N as a function of R one can compute the global average
of the kinetic energy-dissipation εu(Re), which is given by the exact relation [46]6, [31]

εu = (N − 1)R/σ2. (15)

At sufficiently large R the dissipation in the bulk should dominate over that in the
boundary layers, and in that case one expects εu ∼ R3

e [31]. We saw above that the
experimental data at large R yield approximately N ∼ R1/3 and Rp

e ∼ R1/2. If we use
Rp

e as the relevant Reynolds number, this leads to εu ∼ (Rp
e)

8/3, in disagreement with
the expectation for the bulk-dominated dissipation7. In order to explore this issue more
quantitatively, we show in figure 11 the reduced dissipation εu/(Rp

e)
8/3, which according to

the above approximate argument is independent of Rp
e for Rp

e sufficiently large. Indeed we
find that the data for Rp

e � 2000 are consistent with εu = 22.0(Rp
e)

8/3, in disagreement with
the expectation for a bulk-dominated region. We believe that the most likely explanation
of this predicament is that Rp

e (and for that matter Rω
e ) is not the Reynolds number that

is relevant to the argument that yields εu ∼ R3
e. It would be most interesting to measure

Rvmax
e or Ru

e and N in the regime R � 1010 and to see what Re-dependence of εu this
would yield.

6 Siggia E D in [1].
7 We are grateful to Siegfried Grossmann for calling our attention to this problem.
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Figure 11. The reduced average kinetic energy-dissipation εu/(Rp
e)8/3 as a

function of Rp
e . Open symbols: medium sample. Solid symbols: large sample.

Up-pointing triangles: σ = 3.3. Circles: σ = 4.4. Down-pointing triangles:
σ = 5.6. Stars: σ = 28.9. Solid horizontal line: εu = 22.0(Rp

e)8/3. Dashed–dotted
line: εu = 1.95(Rp

e)3. Dotted line: GL prediction for σ = 3.3. Short dashed line:
GL prediction for σ = 28.9.

For Rp
e � 2000 the experimental data at all Prandtl numbers are consistent with

the GL prediction, as shown by their scatter about the dotted and dashed lines in the
figure. Here one sees again the excellent agreement with the predicted Prandtl-number
dependence over the range 3 � σ � 30. The dashed–dotted line in the figure corresponds
to εu ∼ R3

e. One sees that both the data and the GL prediction tend toward the R3
e-

dependence as Re increases up to R∗.

4. Summary and conclusions

In this paper new measurements of the Reynolds number Rp
e based on a plume turnover

time Tp and of the Reynolds number Rω
e based on the large-scale circulation oscillation-

frequency for Γ = 1 cylindrical samples were presented over the Rayleigh-number range
2 × 108 � R � 1011 and the Prandtl-number range 3.3 � σ � 29. For R < R∗ � 3 × 109

both were proportional to R0.46 and agreed well with each other and with the prediction
by Grossmann and Lohse [13]. This provides further support for the GL model in that
parameter range. For R > R∗ the Reynolds number based on the plume turnover time
is represented well by Rp

e = 0.138σ−0.82R0.493, which differs from the GL prediction. The
Reynolds number Rω

e for the twisting oscillation of the LSC for R > R∗ could be fitted
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by Rω
e = 0.17σ−0.81R0.480, which differs from both the GL prediction and the result for

Rp
e . These measurements suggest a qualitative change in the flow for R > R∗ that causes

not only the deviation from the GL model, but also a transition to a regime where the
two Reynolds numbers no longer agree with each other. It may well be that it is not
possible to describe the LSC quantitatively by a unique Reynolds number in this large-R
regime.

The average kinetic energy-dissipation εu, when computed from measurements of the
Nusselt number N and of Rp

e , agrees well with the prediction of GL and with the expected
asymptotic proportionality to (Re)

3 when R < R∗ � 3×109. However, at large R � R∗εu

disagrees with the expected proportionality to (Re)
3 and the GL prediction. Instead,

to a good approximation the data yield εu ∼ (Re)
8/3. We presume that the problem

arises because Rp
e is not the appropriate Reynolds number for the computation of εu when

R > R∗.
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Appendix. Numerical values of the data shown in figures 5(a) and (b)

Table A.1. Reduced Reynolds numbers Rp
e/R1/2 as a function of R. Medium

sample, σ = 3.32 (open down-pointing triangles, figure 5(a)).

R Rp
e/R1/2 R Rp

e/R1/2 R Rp
e/R1/2

1.113 × 109 0.0456 8.855× 109 0.0432 1.602× 109 0.0456
2.234 × 109 0.0438 1.767× 1010 0.0430 7.958× 108 0.0451
4.420 × 109 0.0445 3.101× 109 0.0442 5.350× 108 0.0461

Table A.2. Reduced Reynolds numbers Rp
e/R1/2 as a function of R. Large

sample, σ = 3.32 (solid down-pointing triangles, figure 5(a)).

R Rp
e/R1/2 R Rp

e/R1/2 R Rp
e/R1/2

7.309 × 1010 0.0430 5.170× 1010 0.0442 1.501× 1010 0.0438
3.712 × 1010 0.0445 2.950× 1010 0.0444 2.214× 1010 0.0449
7.480 × 109 0.0443 7.309× 1010 0.0434 5.170× 1010 0.0433
1.114 × 1010 0.0449 3.712× 1010 0.0442 2.950× 1010 0.0437
1.501 × 1010 0.0438 7.480× 109 0.0432
2.214 × 1010 0.0447 1.114× 1010 0.0437
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Table A.3. Reduced Reynolds numbers Rp
e/R1/2 as a function of R. Medium

sample, σ = 4.38 (open circles, figure 5(a)).

R Rp
e/R1/2 R Rp

e/R1/2 R Rp
e/R1/2

1.141 × 1010 0.0346 5.687× 109 0.0350 7.977× 109 0.0345
9.104 × 109 0.0348 1.137× 109 0.0361 1.029× 1010 0.0345
6.845 × 109 0.0349 3.376× 109 0.0348 1.334× 1010 0.0348
4.519 × 109 0.0347 5.763× 108 0.0373 1.511× 1010 0.0344
2.282 × 109 0.0351 8.191× 108 0.0371 1.708× 1010 0.0352
2.281 × 109 0.0355 1.677× 109 0.0360 2.825× 109 0.0353
1.141 × 1010 0.0348 2.825× 109 0.0355

Table A.4. Reduced Reynolds numbers Rp
e/R1/2 as a function of R. Large

sample, σ = 4.38 (solid circles, figure 5(a)).

R Rp
e/R1/2 R Rp

e/R1/2 R Rp
e/R1/2

2.576 × 109 0.0353 4.696× 1010 0.0343 4.710× 1010 0.0346
4.642 × 109 0.0344 4.710× 1010 0.0346 4.714× 1010 0.0348
4.753 × 109 0.0352 4.711× 1010 0.0348 4.642× 109 0.0342
4.842 × 109 0.0345 4.713× 1010 0.0345 9.445× 1010 0.0348
5.055 × 109 0.0348 4.734× 1010 0.0346 1.222× 1010 0.0352
5.068 × 109 0.0354 4.743× 1010 0.0346 7.155× 109 0.0348
7.155 × 109 0.0351 5.677× 1010 0.0343 9.426× 109 0.0352
9.416 × 109 0.0345 6.624× 1010 0.0346 9.420× 109 0.0344
9.419 × 109 0.0349 7.510× 1010 0.0346 4.842× 109 0.0348
9.420 × 109 0.0351 8.454× 1010 0.0347 1.040× 1011 0.0346
9.426 × 109 0.0353 9.393× 1010 0.0343 1.040× 1011 0.0345
9.430 × 109 0.0348 9.397× 1010 0.0344 1.919× 1010 0.0346
9.454 × 109 0.0343 9.397× 1010 0.0344 1.919× 1010 0.0346
9.457 × 109 0.0343 9.399× 1010 0.0346 4.753× 109 0.0350
1.222 × 1010 0.0349 9.402× 1010 0.0347 9.457× 109 0.0347
1.877 × 1010 0.0344 9.432× 1010 0.0342 9.435× 1010 0.0347
1.919 × 1010 0.0348 9.435× 1010 0.0345 4.734× 1010 0.0344
1.919 × 1010 0.0344 9.435× 1010 0.0344 9.430× 109 0.0351
2.415 × 1010 0.0348 9.440× 1010 0.0343 4.696× 1010 0.0346
2.427 × 1010 0.0344 9.445× 1010 0.0346 9.416× 109 0.0352
2.459 × 1010 0.0348 1.040× 1011 0.0344 4.743× 1010 0.0349
3.315 × 1010 0.0349 1.040× 1011 0.0342 4.694× 1010 0.0349
4.243 × 1010 0.0350 9.432× 1010 0.0343 4.693× 1010 0.0343
4.693 × 1010 0.0344 2.427× 1010 0.0345 9.427× 109 0.0347
4.694 × 1010 0.0349 5.056× 109 0.0347

Table A.5. Reduced Reynolds numbers Rp
e/R1/2 as a function of R. Medium

sample, σ = 5.55 (open up-pointing triangles, figure 5(a)).

R Rp
e/R1/2 R Rp

e/R1/2 R Rp
e/R1/2

6.427 × 109 0.0305 4.537× 108 0.0329 1.258× 109 0.0310
3.586 × 109 0.0296 2.258× 108 0.0348 2.515× 109 0.0308
1.794 × 109 0.0309 3.237× 108 0.0328
8.969 × 108 0.0318 6.491× 108 0.0316
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Table A.6. Reduced Reynolds numbers Rp
e/R1/2 as a function of R. Large

sample, σ = 5.55 (solid up-pointing triangles, figure 5(a)).

R Rp
e/R1/2 R Rp

e/R1/2 R Rp
e/R1/2

5.374 × 1010 0.0295 1.564× 109 0.0315 9.074× 109 0.0293
2.990 × 1010 0.0289 6.087× 109 0.0296 1.201× 1010 0.0300
1.508 × 1010 0.0292 2.245× 109 0.0307 2.402× 1010 0.0292
3.003 × 109 0.0298 1.842× 109 0.0306 3.045× 109 0.0309
4.415 × 109 0.0302 5.374× 1010 0.0291 1.564× 109 0.0324
6.092 × 109 0.0298 2.990× 1010 0.0289 6.087× 109 0.0297
9.074 × 109 0.0295 1.508× 1010 0.0284 2.245× 109 0.0305
1.201 × 1010 0.0298 3.003× 109 0.0294 1.842× 109 0.0312
2.402 × 1010 0.0295 4.415× 109 0.0292
3.045 × 109 0.0307 6.092× 109 0.0293

Table A.7. Reduced Reynolds numbers Rω
e /R1/2 as a function of R. Small

sample, σ = 28.9 (stars, figure 5(a)).

R Rω
e /R1/2 R Rω

e /R1/2 R Rω
e /R1/2

2.380 × 108 0.010 68 7.140× 108 0.010 47 1.590× 109 0.009 79
3.170 × 108 0.010 66 7.940× 108 0.010 28 1.900× 109 0.010 27
3.970 × 108 0.010 71 9.520× 108 0.010 18 2.220× 109 0.009 69
4.760 × 108 0.010 48 1.110× 109 0.009 91 2.540× 109 0.010 27
5.550 × 108 0.010 12 1.270× 109 0.009 58
6.350 × 108 0.010 38 1.430× 109 0.009 86

Table A.8. Reduced Reynolds numbers Rp
e/R1/2 (black open down-pointing

triangles, figure 5(b)) and Rω
e /R1/2 (red open down-pointing triangles,

figure 5(b)) as a function of R. Medium sample, σ = 5.68.

R Rp
e/R1/2 Rω

e /R1/2 R Rp
e/R1/2 Rω

e /R1/2

4.534 × 108 0.0529 0.0520 8.973× 108 0.0485 0.0484
1.786 × 109 0.0466 0.0459 3.565× 109 0.0453 0.0442
7.088 × 109 0.0446 0.0424 1.408× 1010 0.0448 0.0413
1.755 × 1010 0.0447 0.0411

Table A.9. Reduced Reynolds numbers Rp
e/R1/2 (black solid down-pointing

triangles, figure 5(b)) and Rω
e /R1/2 (red solid down-pointing triangles, figure 5(b))

as a function of R. Large sample, σ = 5.68.

R Rp
e/R1/2 Rω

e /R1/2 R Rp
e/R1/2 Rω

e /R1/2

1.141 × 1011 0.0432 0.0403 5.740× 1010 0.0438 0.0406
2.843 × 1010 0.0432 0.0422 1.452× 1010 0.0443 0.0412
7.262 × 109 0.0458 0.0451 3.421× 109 0.0473 0.0461
7.252 × 109 0.0462 0.0429 1.452× 1010 0.0447 0.0415
7.165 × 1010 0.0438 0.0402 3.597× 1010 0.0442 0.0410
3.597 × 1010 0.0442 0.0413 1.789× 1010 0.0441 0.0419
1.141 × 1011 0.0433 0.0400 1.096× 1010 0.0448 0.0436
5.134 × 109 0.0451 0.0447
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Table A.10. Reduced Reynolds numbers Rp
e/R1/2 (black open circles, figure 5(b))

and Rω
e /R1/2 (red open circles, figure 5(b)) as a function of R. Medium sample,

σ = 4.38.

R Rp
e/R1/2 Rω

e /R1/2 R Rp
e/R1/2 Rω

e /R1/2

1.116 × 109 0.0365 0.0359 2.224× 109 0.0358 0.0349
4.435 × 109 0.0348 0.0344 8.829× 109 0.0341 0.0332
1.100 × 1010 0.0346 0.0328 7.819× 108 0.0373 0.0372
5.624 × 108 0.0384 0.0386 4.000× 108 0.0390 0.0391
2.858 × 108 0.0399 0.0392 1.564× 109 0.0363 0.0361
3.110 × 109 0.0353 0.0345 6.200× 109 0.0346 0.0339
3.716 × 109 0.0352 0.0347 5.310× 109 0.0351 0.0336

Table A.11. Reduced Reynolds numbers Rp
e/R1/2 (black solid circles, figure 5(b))

and Rω
e /R1/2 (red solid circles, figure 5(b)) as a function of R. Large sample,

σ = 4.38.

R Rp
e/R1/2 Rω

e /R1/2 R Rp
e/R1/2 Rω

e /R1/2

8.980 × 109 0.0355 0.0342 1.795× 1010 0.0356 0.0329
2.706 × 1010 0.0346 0.0322 3.564× 1010 0.0350 0.0332
4.454 × 1010 0.0356 0.0326 4.067× 1010 0.0348 0.0334
3.090 × 1010 0.0350 0.0332 2.244× 1010 0.0355 0.0333
1.386 × 1010 0.0348 0.0339 2.772× 109 0.0358 0.0350
8.734 × 1010 0.0350 0.0320 8.737× 1010 0.0350 0.0325
7.995 × 1010 0.0349 0.0329 7.140× 1010 0.0349 0.0327
6.274 × 1010 0.0349 0.0324 5.356× 1010 0.0347 0.0332
4.533 × 109 0.0354 0.0350 3.610× 109 0.0357 0.0345
6.336 × 109 0.0339 0.0330

Table A.12. Reduced Reynolds numbers Rp
e/R1/2 (black open up-pointing

triangles, figure 5(b)) and Rω
e /R1/2 (red open up-pointing triangles, figure 5(b))

as a function of R. Medium sample, σ = 3.26.

R Rp
e/R1/2 Rω

e /R1/2 R Rp
e/R1/2 Rω

e /R1/2

6.760 × 108 0.0302 0.0304 3.370× 108 0.0316 0.0322
1.343 × 109 0.0305 0.0294 2.670× 109 0.0297 0.0290
5.178 × 109 0.0290 0.0276 1.718× 108 0.0325 0.0330

Table A.13. Reduced Reynolds numbers Rp
e/R1/2 (black solid up-pointing

triangles, figure 5(b)) and Rω
e /R1/2 (red solid up-pointing triangles, figure 5(b))

as a function of R. Large sample, σ = 3.26.

R Rp
e/R1/2 Rω

e /R1/2 R Rp
e/R1/2 Rω

e /R1/2

1.393 36× 109 0.02949 0.029 90 2.728 99× 109 0.029 15 0.028 60
5.441 50× 109 0.02791 0.027 73 1.087 78× 1010 0.027 86 0.027 98
2.150 99× 1010 0.02824 0.026 96 4.300 69× 1010 0.029 09 0.027 33
1.912 57× 109 0.02882 0.028 31 3.821 59× 109 0.028 61 0.028 72
7.633 62× 109 0.02777 0.027 27 1.530 45× 1010 0.027 91 0.027 49
3.164 77× 1010 0.02827 0.027 17
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