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1024 BROWN et al.
uspensions of spheres and rods with aspect ratios 6 and 9. By varying the suspension thickness in
he direction of the shear gradient at constant shear rate, we find pronounced oscillations in the
tress. These oscillations become stronger as the gap size is decreased, and the stress is minimized
hen the sample thickness becomes commensurate with an integer number of particle layers.
espite this confinement-induced effect, viscosity curves show shear thickening that retains bulk
ehavior down to samples as thin as two particle diameters for spheres, below which the
uspension is jammed. Rods exhibit similar behavior commensurate with the particle width, but
hey show additional effects when the thickness is reduced below about a particle length as they
re forced to align; the stress increases for decreasing gap size at fixed-shear rate while the shear
hickening regime gradually transitions to a Newtonian scaling regime. This weakening of shear
hickening as an ordered configuration is approached contrasts with the strengthening of shear
hickening when the packing fraction is increased in the disordered bulk limit, despite the fact that
oth types of confinement eventually lead to jamming.

2010 The Society of Rheology. �DOI: 10.1122/1.3474580�

. INTRODUCTION

When fluids are confined to thin layers, their flow behavior can differ markedly from
he bulk. This is an issue of considerable importance in situations ranging from molecular
ubrication films where it can induce increased friction �Braun and Naumovets �2006�� to

acroscopic granular materials flowing out of a narrow hopper opening, where the par-
icles can jam into rigid structures. Here we investigate this transition from flowing to
amming for densely packed, non-Brownian suspensions which exhibit shear thickening
n the absence of strong interparticle interactions �Barnes �1999�; Brown et al. �2010��.
hear thickening fluids are non-Newtonian such that their dynamic viscosity—defined as
hear stress divided by shear rate in a steady state—increases over some range of shear
ate. In dense suspensions this phenomenon is remarkable because it is characterized by

dramatic increase of stress with shear rate �Metzner and Whitlock �1958�; Hoffman
1972, 1982�; Laun �1994�; Frith et al. �1996�; Maranzano and Wagner �2001�; Egres and

agner �2005�; Lootens et al. �2005�; Fall et al. �2008�; Brown and Jaeger �2009�� which
oes by the name of discontinuous shear thickening, as well as the ability to absorb
mpacts �Lee et al. �2003��. Consequences of jamming can be seen even in bulk rheology
n terms of a critical packing fraction �c corresponding to random loose packing above
hich the suspension is jammed, i.e., a yield stress is measured. This critical packing

raction controls the shear stress as a function of shear rate such that the slope increases
ith packing fraction and becomes discontinuous at �c �Brown and Jaeger �2009��. Prior
ork on shear thickening fluids was mostly limited to bulk behavior. Here we take the
pposite approach and study shear thickening suspensions in the limit of only a few
ayers thick.

A key quantity in fluid-jammed transitions of granular systems is the system size range
ver which the transition occurs. Considering that differently shaped particles can arrange
nto different structures, we investigate this transition for both spheres and long rods.

hile the angular orientation of spheres with respect to the velocity gradient is irrelevant
o the flow structure, the orientation of long rods is likely to be very significant. In thin,
ighly confined samples, rods can be forced to align in the plane of the sample, and this
an be used to investigate which particle degrees of freedom are important to shear
hickening. The potential for different transition behaviors is especially intriguing con-
idering that shear thickening in bulk is qualitatively similar for suspensions of spheres
nd rods �Maranzano and Wagner �2001�; Egres and Wagner �2005��.

We first address the fluid-jammed transition under confinement in Sec. III. We per-

ormed fixed-shear-rate rheological measurements for suspensions of spheres and rods
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1025SHEAR THICKENING IN CONFINED SUSPENSIONS
hat are only a few layers thick in the direction of the shear gradient. We show that there
s a confinement effect such that the stress varies non-monotically with the gap size and
as local minima commensurate with integer numbers of particle layers. This confine-
ent effect is measurable up to about nine layers of spheres, and down to two layers,

elow which the system is jammed. Additionally, the rods are forced to align in small
aps and show an increase in stress at gap sizes below about a particle length as particle
otation in the plane made by the shear direction and gradient is suppressed. We then
how that the onset of jamming occurs at 2 particle layers over a wide range of packing
ractions. In Sec. IV, we show full viscosity curves to determine how shear thickening
ehavior evolves at small gaps. We first address this for spherical particles. While we find
ransient jamming in stress-controlled measurements for small gaps, remarkably, bulk
hear thickening behavior remains unchanged down to two particle layers. Below two
article layers the system becomes jammed. For long rod-shaped particles we find the
ame jamming below two particle layers, but there is an additional gradual transition. As
he gap size is reduced below about a particle length, the shear thickening weakens,
pproaching a Newtonian scaling regime before the system jams. In Sec. V, we contrast
hese results with the transition from shear thickening to jamming at �c in bulk systems
nd discuss them in terms of different proposed mechanisms for shear thickening.

I. MATERIALS AND METHODS

We used two types of particles to explore geometric effects: spheres and rods. To
nsure geometric effects were prominent we worked with particles above 10 �m in size
o minimize effects of Brownian motion and interparticle interactions. The spheres were
mooth soda-lime glass �density of 2.46 g/ml� obtained from MoSci corporation �class
V� with a hydrophobic silane coating. The nominal size range was such that 80% of
articles pass through a 120 mesh sieve and are retained by a 170 mesh sieve. The
article diameters were manually measured with an optical microscope; we found a mean
iameter a=89�2 �m �half of this uncertainty is absolute from our measurement scale
nd half is statistical based on many particle measurements� with a standard deviation of
2 �m. The peak of the size distribution is 92�3 �m and skewed slightly to smaller
izes, part of which is due to broken pieces which make up about 3% of the particles.
hese spheres were dispersed in mineral oil with a viscosity of 58 mPa s and density of
.87 g/ml. The hydrophobic coating was used to minimize the particle-fluid surface
ension. The value of this surface tension must be below a threshold for a suspension to
xhibit shear thickening �Barnes �1999�; Brown et al. �2010��. However, we note that
ncoated glass spheres will also shear thicken in mineral oil, so this surface tension was
lready small enough and the coating was not necessary to obtain shear thickening.

The rods were fabricated using the PRINT® process �Rolland et al. �2005�� to control
he shape of the particles. We designed the chemistry specifically to minimize particle-
uid surface tension so the suspension would exhibit shear thickening. Typically, the
onomer solution was prepared as follows: 0.01 g of 1-hydroxycyclohexyl phenyl ketone

HCPK, Aldrich�, and 0.02 g of fluorescein o-acrylate �Aldrich� were placed into an
ppendorf tube followed by the addition of 0.1 ml of N ,N-dimethylformamide �DMF,
ldrich�. The monomer mixture was then mixed thoroughly by vortex mixing to dissolve

he HCPK photoinitiator and the fluorescein o-acrylate fluorophore. Lastly, 0.57 g of
rimethylolpropane ethoxylate triacrylate �Mn=912 g /mol, Aldrich� and 0.40 g of poly-
ethylene glycol� methyl ether acrylate �Mn=454 g /mol, Aldrich� were added to the
onomer mixture and vortex mixed again. The resulting solution was composed of 57%
w/w� triacrylate, 40% �w/w� methyl ether acrylate, 1% �w/w� HCPK, and 2% �w/w�
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1026 BROWN et al.
uorescein o-acrylate. Rectangular rods were then fabricated from this solution using the
RINT process in two sets with different aspect ratios �. The rods were suspended in
oly�ethylene glycol� dimethyl ether �PEG� �Mn=250 g /mol, Aldrich�. The dimensions
f particles that had been soaked in PEG were measured with an optical microscope. One
et had mean dimensions of �266.5�0.6 �m�� �29.9�0.5 �m�� �31.4�0.4 �m�.
he standard deviation in each particle dimension from particle to particle is 2–3 �m.
he shortest length is non-uniform for individual particles, as can be seen in Fig. 1. The
idth of a=29.9 �m listed above is for the mean width at the ends of the particle. On

verage, the width is less in the center of the particles by �a=10.6 �m than at the ends.
he aspect ratio of these particles, defined as the longest dimension divided by the
hortest dimension a, is �=8.9 �we will refer to these as �=9 rods�. The other set had
ean dimensions �139.5�0.7 �m�� �24.9�0.6 �m�� �30.2�0.4 �m�. In this case,
=24.9 �m and �a=8.2 �m. These particles have aspect ratio �=5.6 �we will refer to

hese as �=6 rods�. Because of the large aspect ratio of these particles they have a
endency to break under stress and about 18% of the �=9 rods and 9% of the �
6 rods were found broken after being sheared in rheology experiments.

Measurements were performed with an Anton Paar Physica MCR 301 rheometer
hich measures the torque T required to shear a sample at a tool rotation rate �. A
arallel plate setup was chosen so that the sample thickness d in the horizontal gap
etween plates could be varied continuously. The plate radius used was R=12.5 �or 25�
m. The effective viscosity, indicating the mechanical resistance to shear, is defined as
�	 / 
̇ in a steady state for shear stress

	 =
2T

�R3 �1�

100 µm

(a)

200 µm

(c)

(b)

50 µm

(d)

100 µm

a − δa

a

Γa

IG. 1. Images of PEG rods. ��a� and �b�� dry particles viewed with an scanning electron microscope; ��c� and
d�� particles soaked in PEG viewed with an optical microscope with fluorescence. ��a� and �c�� aspect ratio
=9. ��b� and �d�� �=6. Dimensions of particles are illustrated in panel �d�.
nd shear rate



T
l
p
s

r
h
s
s
e
t
c
t
a
r
o
r
r
m
�
d
u
v
t
d
s
m
T
m
o
W
s
s
r
u
r
r

I

p
o
p
w
r
r

1027SHEAR THICKENING IN CONFINED SUSPENSIONS

̇ =
R�

d
. �2�

hese definitions are meant to characterize the mechanical response; we do not imply a
inear shear profile. The thickness can be set with a resolution of 1 �m and with a
arallelism of �3 �m. The plate surfaces are smooth and the tool surfaces are stainless
teel.

Measurements were made at a bottom plate temperature controlled at 20 °C with the
oom humidity ranging from 22% to 38%, although during individual experiments the
umidity was constant. This affects solvent evaporation/adsorption which can have a
ignificant effect on the rheology due to the sensitive packing fraction dependence of
hear thickening suspensions �Brown and Jaeger �2009��. Care was taken so that no fluid
xtended outside the parallel plates and the particles were confined to the space between
he plates by surface tension. This boundary condition means that dilation under shear
an result in normal stresses on the rheometer tool and has a significant effect on discon-
inuous stress-shear-rate curves �Fall et al. �2008��. Samples were pre-sheared immedi-
tely before measurements for at least 100 s at shear rates above the shear thickening
egime where the steady state flow is fully mobilized. After this pre-shear, measurements
n suspensions were found to be repeatable with a typical variation of 10%–20% from
un to run. This is the variation whether we remeasure a sample that is in place on the
heometer or replace it with a new one with the same procedure. Following the preshear,
easurements were performed with decreasing and then increasing control parameter

stress, shear rate, or gap size, depending on the test� and additional runs were made with
ifferent control ramp rates to check for hysteresis, thixotropy, and transients. Here we
sually show only one set of curves for brevity if they were all identical within typical
ariations. Since glass spheres are denser than mineral oil, we checked that the bulk shear
hickening behavior is qualitatively the same if the spheres are instead dispersed in a
ensity matched fluid at d=500 �m. The rods are nearly density matched with the PEG
olvent they are dispersed in. The �=9 rods at an initial packing fraction �=0.26 were
easured to settle at a terminal rate of 4 �m /s before geometric constraints arrest them.
his settling rate is below the plate edge speed in the shear thickening regime for all
easurements with the rods. For reference, this settling rate would be comparable to that

f 89 �m glass spheres if they had a 1% density mismatch with their suspending fluid.
e have measured bulk shear thickening in the sphere suspensions with both rough and

mooth plates and did not find any difference in the shear thickening due to the plate
urface. We avoided rough plates in the following experiments because they could be
esponsible for additional jamming effects at small gaps. To directly measure slip, we
sed video microscopy to observe the shear profile at the outer edge of the plate. The
esults of these measurements are shown in the Appendix and confirm that slip is not
esponsible for the measured gap-size dependence.

II. GAP-SIZE SWEEP AT FIXED-SHEAR RATE

We first investigate the transition from fluid to jammed states for thin layers of sus-
ensions at constant shear rate. To do this we measured the shear stress and normal stress
n the top plate as the rheometer gap size was reduced down to a few particle layers. We
erformed this sweep at constant shear rate to study the gap-size dependence only and we
ill consider the effect on shear thickening later. To vary the gap continuously, the initial

adius of the sample was made smaller than that of the plates so when the gap size was

educed the sample could expand horizontally without spilling. To obtain the stress and
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1028 BROWN et al.
hear rate of the sample we use Eqs. �1� and �2� but replace the plate radius R with the
adius of the sample, which varies as R=�V / ��d� for a constant volume V. We measured
he stress as the gap size was ramped down and then back up with a rotation rate varying
s ��d1.5 so that the shear rate 
̇=�R /d remained constant.

We show data first for a suspension of glass spheres in mineral oil at �=0.50 �below

c�. The sample started out with a radius of 10 mm at a gap height of d=1000 �m for
25 mm radius plate with a shear rate 
̇=4 s−1. The gap dependence of the stress was
easured several times consecutively to ensure the rheometer plates were wetted and to

heck for repeatability. Stress measurements are shown in Fig. 2�a�. Tests were also run
t different shear rates and with different rates of gap-size change to check that the
bserved effects occurred at consistent gap sizes and did not depend on tool orientation or
emporal oscillations. We find that the shear stress approaches a constant value at large
aps as expected for bulk fluid behavior. As the gap decreases, an oscillation of increas-
ng amplitude is superimposed on that background. Based on the oscillation amplitude,
his confinement-induced effect is quite strong for layers two to three particles thick but
ecomes about 10% of the measured stress at six to seven particle layers, at which point
his gap-size dependence would not be resolvable in viscosity curves from run to run.
nalysis of the wavelength and phase of these oscillations is shown in Sec. III A to shed

ight on the structure of these suspensions at small gaps. The absolute normal stress 	N is
lotted in Fig. 2. Typically positive normal stresses are generated along with discontinu-
us shear thickening �Lootens et al. �2005�; Fall et al. �2008��, but the net normal stress
n these measurements is negative at larger gap sizes where shear-induced stress is rela-
ively low and the dominant effect comes from surface tension which is observed even at
ero-shear rate.

We performed the same experiment with a suspension of �=9 rods at �=0.30 �below

c� and 
̇=31 s−1. At an initial gap height of 720 �m the sample diameter was 4.5 mm
or a 50 mm diameter plate. While both spheres and rods showed commensurability
ffects at small gap sizes indicated by the oscillations in Fig. 2, the major difference
etween the particle shapes is the baseline behavior. There is a kink in Fig. 2�b� below
hich the stress increases more dramatically as the gap size is reduced. This kink was

eproducible when experiments were repeated several times. This change in scaling oc-

2 3 4 5 6 7 8 9
101

102

103

104

d/λ

τ,
τ N

(P
a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
102

103

104

d/λ

(a) (b)

IG. 2. Shear and normal stresses as a function of gap size d at fixed-shear rate. The gap size is scaled by the
easured wavelength  of oscillations. �a� Spheres of diameter 89 �m and =86.1 �m. �b� Aspect ratio �
9 rods of width a=29.9 �m and =29.8 �m. Solid circles: shear stress 	 for decreasing gap. Open circles:
for increasing gap. Solid triangles �red online�: normal stress 	N for decreasing gap. Open triangles �red

nline�: 	N for increasing gap.
urs when the gap is roughly equal to one particle length �in units of d /a as in Fig. 2 this
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1029SHEAR THICKENING IN CONFINED SUSPENSIONS
ength is equal to the aspect ratio� and does not occur for spherical particles. This sug-
ests that the additional particle length scale of rods can be observed in rheological
easurements. In this case the stress becomes higher as the small gap prevents particle

otation out of the horizontal plane.
We note some other observations based on performing multiple runs. The measure-

ents shown in Fig. 2 were done just below �c and at shear rates just above the shear
hickening regime in each case as can be confirmed by comparing the stress in the bulk
imit to Figs. 6 and 8. We chose different values that are in the same rheological regime
ather than at the same shear rate and packing fraction, which would have been in
ifferent rheological regimes due to the different shapes. We confirmed that the shear
ow is fully developed �i.e., all particles are in motion with a nearly linear shear profile�

n this regime using video microscopy �see Appendix�. We also performed measurements
t lower shear rates in a region where the shear flow is not fully developed; in those cases
scillations in the stress were less apparent if observed at all. This suggests that these
onfinement-induced effects are less prominent at stresses below the shear thickening
egime where the shear flow is not fully developed. Similar oscillations were seen above

c where there is a large yield stress, but the background increased as the gap was
ecreased even for spheres instead of remaining flat for large gaps. A reproducible kink
as never observed in the background for spheres. The peak heights are somewhat
ariable from run to run, and there is no clear preference for peaks from either decreasing
r increasing gap measurements to be larger except for the first peak �i.e., the 2nd peak
eing larger for increasing gap in Fig. 2�a� is not a reproducible feature�. For spheres, the
rst peak seems to be significantly affected by hysteresis at the turnaround point which is
ost apparent in the normal stress measured on the top rheometer plate. The normal

tress shown in Fig. 2�a� became measurable during the lowest peak and approached 24
Pa �the maximum our rheometer could handle� as the gap size was reduced down to
83 �m �2.06a�. For this reason we could not compress the sample to smaller gap sizes.
hen the gap size was then increased from this point, the normal stress dropped off
uch more quickly than it grew for decreasing gap size. This hysteresis effect suggests

hat as the gap decreases and forces the particles to arrange into fewer layers, this
earrangement is met with much resistance. As the gap size was increased, there is much
ess resistance. Through friction this normal stress can translate to a shear stress, resulting
n much more shear resistance for decreasing gap size than for increasing gap size when
he normal force is present, as seen in the first peak of Fig. 2�a� where the normal stress
xceeds the shear stress. This hysteresis effect is also likely the reason the first pair of
eaks is slightly offset with the peak for decreasing gap to the left and the peak for
ncreasing gap to the right.

. Structures under confinement

The wavelength and phase of the confinement-induced oscillations can give some
nsight into the structure of the shear flows in thin layers. The oscillations do not fit well
o standard decaying sinusoidal functions, so to identify the extrema we fit Gaussian
unctions locally to each extrema to obtain the gap size dn at each valley �which we
ssign to integer n in order so that smaller n corresponds to lower gap size� and peak
which we assign to integer plus 1/2 values of n�. These are then plotted in Fig. 3 vs peak

umber n for decreasing stress measurements only. The extrema appear to be equally
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1030 BROWN et al.
paced as expected for oscillations with a fixed wavelength. A linear fit dn= ��+n� is
sed to obtain the wavelength  and phase � �in revolutions� of the oscillations.1

For the spheres, we obtain =86.1�0.5 �m and �=−0.04�0.04 �with statistical
ncertainties from the fit�. The wavelength is compatible with the mean particle size of
9�2 �m, and well within a standard deviation of 11 �m of the mean particle size.
ecause of the relatively large polydispersity, it is apparent that the commensurability of

he gap size depends on the mean particle size rather than the maximum particle size, for
xample. Since the stress minima occur at integer multiples of the wavelength, this
ndicates that flow is easier when the particles fit nicely into layers. At intermediate gaps
articles cannot arrange into layers so are more likely to be forced into arrangements
here particles cannot easily shear past each other.
Previous studies have shown that confined sphere packings can under certain condi-

ions order into crystalline structures, for example, with confinement in the direction
ormal to the shear plane �Cohen et al. �2004�� or without shear �Thompson et al. �1992�;
esmond and Weeks �2009��. Some crystalline structures would result in different wave-

ength and phase values. For example, if the spheres were hexagonally close packed, a
ig-zag sliding motion could take advantage of the larger gaps above and between par-
icles �Vermant and Solomon �2005�� instead of going directly over top of each other.
his sort of structure could result in a wavelength as small as �3a /2 and a phase differ-
nce of �=1−�3 /2 because the smaller thickness per layer cannot be taken advantage of
ext to the top and bottom plates. Any flow structure that is arranged into overlapping
ayers would result in �a and ��0. The likely significance of the measured values of
=a and �=0 is that such non-overlapping layers can still shear past each other but do
ot have to have any ordered structure within the layer, so this is the only wavelength and
hase compatible with disorganized shear and so is entropically favorable.

For �=9 rods, we fit dn�n� to obtain =29.8�0.2 �m. This wavelength is in the
ange of the two short dimensions of the rods suggesting it is set by one of those

There is an arbitrary integer offset in n which we choose so that extrapolations of the extrema locations for
dn=0 appear at �n��1 /2 for ease of interpretation of the phase offset �since the oscillations are periodic phase

0 1 2 3 4 5
0

40

80

120

n

d n
(µ

m
)

0 2 4 6 8 10
0

200

400

600

800

n

(a) (b)

λ=a

a3
2

λ=

IG. 3. The extrema locations dn vs extrema number n from oscillations of the stress as a function of gap size.
a� Spheres with diameter a=89 �m. Insets: diagrams of possible layer arrangements for shear flow into the
age and their associated wavelengths. The measured wavelength is consistent only with non-overlapping layers
s in the upper diagram, although organization within those layers is not implied. �b� �=9 rods with width
=29.9 �m. Solid circles: local minima of the stress as a function of gap size. Open circles: local maxima.
offsets by integer revolutions are equivalent�.
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1031SHEAR THICKENING IN CONFINED SUSPENSIONS
imensions. Within measurement uncertainties, it is consistent with the shortest dimen-
ion measured at the ends of the particles, a=29.9�0.6 �m. While we could have
hosen a number of different values to characterize the particle width a given the varia-
ion, none of the other obvious choices is consistent with . For example, the intermedi-
te length is 31.4�0.4 �m, the shortest width averaged over the length of the particle
−�a /2 is 24.6�0.5 �m, and the average of these two is 28.0�0.6 �m. The likely
ignificance of the value of a is that it corresponds to the mean value of the smallest
hannel that particles could slide through. These oscillations with this length scale sug-
est a tendency toward alignment of rods with the shear direction and enforced layering
f particles in their thinnest dimension as the gap size is reduced. The fit of dn�n� gave the
hase offset �=0.03�0.02, again indicating that the stress is minimum and it is easier to
ow for an integer number of layers.

For both spheres and rods, shear is easiest when the gap size is commensurate with an
nteger number of particle layers. The measured wavelengths and phases of oscillations in
oth cases suggested that the particles arrange in such a way that they can shear in
on-overlapping layers. While the rods exhibited a higher background stress as particle
otation was suppressed at gaps smaller than a particle length, the spheres have no such
eometric restrictions on rotation and exhibited a uniform background stress.

. Onset of jamming in confined systems

We observed that suspensions of both spheres and rods cannot be further compressed
eyond about two particle layers. In the bulk limit, the onset of jamming, defined by the
nset of a yield stress, occurs when the packing fraction is increased in a disordered
ystem �O’Hern et al. �2003��. One approach to understand the significance of jamming
t two layers may be to interpret the confinement effect as a deviation of the packing
raction at the onset of jamming from the bulk value. For example, this packing fraction
s known to decrease in systems of frictionless spheres that are reduced to less than about
en particle layers �Desmond and Weeks �2009��.

To determine the onset of jamming in confined systems, we measure the shear and
ormal stresses at a fixed-shear rate of 1 s−1, and reduce the gap size at a rate of
.1 �m /s. We do this for a wide range of packing fractions �. This is similar to the
revious measurements, except that now we are working in the limit of small shear rates
o measure the onset of jamming. A sample pair of stress curves is shown in Fig. 4�a�.
he onset of jamming is taken as the smallest gap size where the shear stress remains at
low value before it increases dramatically as the gap size is reduced. This is plotted in
ig. 4�b� for different packing fractions. Additionally, we plot the minimum gap size
eached, obtained when the compressive stress reached 40 kPa �the maximum applied�.
his is similar to the condition for the minimum size reached in the experiments shown

n Fig. 2, although those measurements were made at much higher shear rates. To check
hat this is indeed a yield stress in the limit of quasistatic compression, we varied the
hear rate from 10−3 to 10 s−1 and compression strain rate from to 3�10−5 to 2

10−2 s−1. Fluid and jammed states could be distinguished because the low stress value
aried with the shear rate such that the viscosity was the same at different shear rates, and
he high stress values at small gaps remained independent of shear rate as in the case of
yield stress. At small �, there was no significant change in the gap size at the transition
r the minimum gap size reached when varying the shear or compression rate. At �
0.5, the minimum gap value increased for increasing compression rate or decreasing

hear rate, suggesting that a large shear is important for driving rearrangement of par-

icles under compression so they can pack more efficiently. In every case the minimum



g
r
s
t
t

o
d
o
a
s
d
�

a
d
a
d
g
p
p
t
T
l
c
b

2

F
8
d
p
4

1032 BROWN et al.
ap values approached an asymptote in the limit of low compression rate and high shear
ate, and the plotted values are consistent with that limit.2 Near the jamming transition at
mall gaps, there are many large fluctuations. These values are not a reproducible func-
ion of the gap size upon repeated measurements, indicating they are transient fluctua-
ions.

It is seen that the onset of jamming remains constant at about 2.1a over a wide range
f packing fractions. It is likely that this is somewhat larger than 2a because the poly-
ispersity in particle size is about 13%, so in some places the layers will be thicker than
thers. Very near the bulk jamming transition at �c, the onset of a yield stress occurs at
higher gap size. This is a sharper transition than seen in simulations of frictionless

pheres with periodic boundaries in two directions �Desmond and Weeks �2009��. The
ifference in packing fraction at the onset of jamming is usually attributed to friction
Jerkins et al. �2008��.

We note that there is a hysteresis effect in the onset of the yield stress. For example,
t �=0.2, if we compress to d=1.3a, then lift the plate up to d=1.45a the normal force
rops immediately, and upon shearing there is no yield stress. In other words, the onset of
yield stress is lower for a history of increasing gap size compared to a history of

ecreasing gap size. We also note that the yield stress grows slowly over a wide range of
ap size at these small packing fractions. If the yield stress was coming from the com-
ression of hard spheres with a Hertzian contact law �O’Hern et al., �2003��, the com-
ressive strain of individual particles at that stress would be on the order of 10−3, much
oo little to account for a compression of about 50% past the onset of the yield stress.
hus the yield stress must be coming from a different source, perhaps friction, or capil-

ary forces from the generation of trapped air bubbles created as the packing rearranges
atastrophically. While the maximum applied stress of 40 kPa is an arbitrary value, as can
e seen in Fig. 4�a�, the minimum gap size reached is not very sensitive to this value. It

Even though this is not technically the zero-shear-rate limit because it must be large compared to the com-
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IG. 4. �a� Shear stress 	 �solid circles� and normal stress 	N �open triangles� as a function of gap size for
9 �m glass spheres at a packing fraction �=0.41. �b� Jamming phase diagram showing the transition gap size
/a normalized by mean particle size for different �. Open symbols: the onset gap size of a yield stress for each
acking fraction, below which the system is jammed. Solid symbols: the minimum gap that could be reached at
0 kPa normal stress. Dashed line: �c, above which the system is jammed in the bulk limit.
pression rate, the stress is not increasing with shear rate so this still effectively measures a yield stress.
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1033SHEAR THICKENING IN CONFINED SUSPENSIONS
s probably a good approximation of the onset of jamming due to the compression of hard
articles since we are not aware of other mechanisms that could support such large
tresses.

The minimum gap size reached remains about 2a throughout the entire shear thicken-
ng range. While the minimum gap size drops to about 1.1a for ��0.30, we note that
iscontinuous shear thickening does not occur at such low packing fractions of spheres.
e can understand the sharp transition in minimum gap size based on a free volume

rgument. The fact that the minimum gap sizes correspond to approximately integer
umbers of layers suggests that the particles are effectively packing into layers at these
mall gaps and do not pack as efficiently at a small, non-integer numbers of layers. As the
ystem is compressed below about 2a, it must transition from 2 layers to effectively 1
ayer. When crossing this transition, the effective free volume that particles can make use
f is approximately halved, as confirmed by the fact that the transition from 2 to 1 layer
s at about half the packing fraction of the bulk jamming value. Thus, the significance of
amming at two layers seems to be that there is a large loss of effective free volume.

V. SHEAR THICKENING AT DIFFERENT GAP SIZES

. Spheres

We next measured viscosity curves for spheres at small gaps to observe the effect of
onfinement on shear thickening. We started with a suspension of spheres at �=0.558
below �c� at a large gap size and removed some sample each time to get to a lower gap,
ringing the plate down so the sample just fills the gap to avoid slop. At each gap height,
e measured viscosity curves for 10 s per measuring point. We performed tests in both

tress- and shear-rate-controlled mode and found agreement for large gaps but a differ-
nce appeared for small gaps. For gaps below about d=300 �m �=3.4a� in stress-
ontrolled mode, large apparent variations in viscosity were measured. A comparison of
easurements in stress- and shear-rate-controlled mode can be seen in Fig. 5 for d
2.6 mm �2.92a�. When the experiment was repeated, these jumps in stress-controlled
ode do not occur at the same stress so they are indicative of large fluctuations. Exclud-

ng these jumps, the underlying viscosity curves agree from run to run. These apparent
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IG. 5. Apparent viscosity curves in controlled shear stress mode �solid symbols� and controlled shear-rate
ode �open symbols� for spheres at �=0.558 with a gap size d=260 �m �2.92a�. Each vertical line off-scale

orresponds to a temporary jam of the rheometer.
igh viscosities are the result of dramatic drops in shear rate, many of which are consis-
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1034 BROWN et al.
ent with zero shear rate over the 10 s measuring point duration within the resolution of
he measurement of 10−4 s−1. We interpret these events as temporary jams of the rheom-
ter due to chains of particles locking up across the gap. If we measure the same range in
hear-rate-controlled mode, these temporary jams are not found. We obtain typical shear
hickening curves that are similar to those at larger gap sizes and match the underlying
iscosity curves in the stress-controlled measurement without fluctuations. In shear-rate-
ontrolled mode, the rheometer can simply break those chains of particles apart without
etting stuck. For this reason, we could only measure in shear-rate-controlled mode at the
maller gap sizes.

Viscosity curves can be seen in Fig. 6 at different gap sizes for decreasing stress or
hear-rate ramps. Even in shear-rate-controlled mode measurements still exhibited large
uctuations at the smallest gaps. While significant fluctuations are seen at a gap of d
190 �m �2.13a�, a dramatic increase in fluctuations is seen at d=180 �m �2.02a�, and

here is no clear underlying shear thickening curve as is the case at larger gaps. In
hear-rate-controlled mode, these stress fluctuations were significant enough at d
180 �m that the rheometer motor could not adjust quick enough to keep the shear rate
t the set value. These fluctuations can be quantified by a root-mean-square logarithmic
ariation ln ��=���ln �−ln �bl�2	. Here �bl is the baseline viscosity curve which is
btained from a fit excluding the large fluctuations since they tend to be rare and positive
nly. The value of �� indicates a typical fractional variation from the baseline viscosity
uch that ��=1 corresponds to a typical variation of 100% of the baseline value. These
ractional fluctuations �� are plotted using the right axis of Fig. 7 as a function of gap
ize for both stress- and shear-rate-controlled data. If �� becomes comparable to or
xceeds unity, then obtaining a meaningful steady state viscosity curve becomes difficult.

To quantify the effect of gap size on shear thickening we next focus on steady state
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IG. 6. Apparent viscosity curves for different gap sizes for spheres. Solid symbols: shear stress-controlled
ata. Open symbols: shear-rate-controlled data. The large variations are indicative of fluctuations and not mean
ehavior. Legend: values of gap size d /a in units of particle diameters.
iscosity curves. There is not yet a well-accepted quantity for the strength of shear
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1035SHEAR THICKENING IN CONFINED SUSPENSIONS
hickening. Bulk discontinuous shear thickening typically occurs in a relatively fixed
tress range and has a slope that increases with packing fraction up to �c �Maranzano and
agner �2001�; Egres and Wagner �2005�; Brown and Jaeger �2009��. Shear thickening

uspensions seem to have a similar scaling with packing fraction such that ��	 in the
imit approaching �c from below �Brown and Jaeger �2009��, so the maximum dynamic
ange of the viscosity is the same as the dynamic range of the stress. Thus the stress range
f the shear thickening region is a good measure of shear thickening strength for com-
aring different suspensions. However, we do not find a reproducible trend in the stress
ange with gap size for any particle shape. Alternatively, the slope of the shear thickening
egion can be used to quantify the strength of shear thickening. We characterize the shear
hickening part of the curve by ��	1−�. This definition is equivalent to 	�
̇1/� and
ewtonian flow corresponds to �=1 and a discontinuous jump in the stress-shear-rate

urve corresponds to �=0. We fit ��	1−� to viscosity curves in a fixed stress range of
.3–1 Pa which corresponds to the steepest portion of the shear thickening region. Values
f the slope 1−� vs gap size are shown in Fig. 7. The variation from run to run can be
ttributed to the high sensitivity of the magnitude and slope of the viscosity curves to the
acking fraction which can change from run to run as sample is removed. At this packing
raction, a 1% change in packing fraction can cause a change in � of 0.1 and a factor of
in viscosity because of the proximity to the critical point �c �Brown and Jaeger �2009��.
he remarkable feature of Fig. 7 is that 1−�, characterizing the strength of shear thick-
ning, is independent of the gap size all the way down to two particle diameters until
amming dominates the rheology. Thus the transition from a strongly shear thickening
uspension to one that is jammed is quite sudden at 2 particle diameters.

In this measurement series, we reduced the gap down as far as 175 �m �1.97a� where
he normal stress applied on the sample reached 24 kPa, the maximum that can be applied
y the rheometer. In contrast, at 180 �m the normal stress remained below 20 Pa in the
imit of zero-shear rate. This suggests that the yield stress of the suspension jumped
ramatically between 1.97a and 2.02a. Despite the differences in procedure and packing
raction from the measurements in Fig. 2, we again find the limiting gap size to be about
a. We also note that for 180 and 190 �m gaps, or below about 2.1a, the glass beads
ere audibly grinding underneath the plate when sheared. When compared to the data in
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IG. 7. Circles �left axis�: Logarithmic slope 1−� corresponding to fits of ��	1−� to viscosity curves for
ifferent sample thicknesses d for a=89 �m diameter spheres. Triangles �right axis�: fluctuations in viscosity

� measured as a fraction of the baseline viscosity. Solid symbols: shear stress-controlled mode. Open symbols:
hear-rate-controlled mode. Dotted line: separates the shear thickening and jammed states.
ig. 2, this is the same region where the normal stress exceeds the shear stress by about
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1036 BROWN et al.
n order-of-magnitude. Both observations suggest that the shear stress is dominated by
riction in this regime. Variations in this friction as particles grind past each other may
xplain why fluctuations occur in shear-rate-controlled mode and why viscosity curves
annot be measured in stress-controlled mode.

. Rods

Now that we have this baseline result for spherical particles, we turn our attention to
od-shaped particles which have two length scales and whose structure can evolve as the
ap size is reduced and rotation is suppressed. In this case we performed all measure-
ents in shear-rate-controlled mode to avoid transient jamming. Viscosity curves for rods

f aspect ratio �=9 for different sample thicknesses are shown in Fig. 8. A yield stress
ppears for small gaps, and at the smallest gaps corresponding to less than about two
article widths, the suspension is jammed again in the measurement range of our rheom-
ter, much like for spheres. The logarithmic slopes 1−� are obtained from fits to the
iscosity curves in the fixed stress range of 4–20 Pa which corresponds to the region of
teepest slope, except for the smallest gap sizes where the yield stress encroaches on this
egion. In this case, we measured the most positive slope to be sustained over a factor of
in stress. These values of 1−� are plotted in Fig. 9. To check that the yield stress does

ot bias the slope, we refit �
	1−� with the yield stress subtracted off the data. The fit
alues of 1−� did not shift beyond the given error bars. Unlike for spheres, we see that
he slope of the shear thickening curve decreases as the gap size d decreases below a few
article lengths �a. The slope gradually approaches zero, indicating that the shear thick-
ning regime transitions into a Newtonian scaling regime in the limit of 2 particle widths.

Similar measurements of viscosity curves at small gap sizes were made for three
ifferent packing fractions of rods, all below �c, and logarithmic slopes are shown in Fig.
. In each case the slope 1−� is normalized by the limiting value 1−�p obtained at large
ap sizes. The data for all three packing fractions tend to overlap when normalized in this
ay despite the fact that for bulk shear thickening the value of 1−� varies strongly with

he packing fraction �Brown and Jaeger �2009��, suggesting a universal function describes
he transition from shear thickening to a Newtonian scaling regime under confinement.

To determine how this transition depends on rod length, we did a similar set of
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IG. 8. Viscosity curves for �=9 rods for different gap sizes at �=0.33. Gap sizes d /a in units of particle
idths are shown in the key.
easurements for �=6 rods, shown in Fig. 10. We fit the logarithmic slope in the stress
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1037SHEAR THICKENING IN CONFINED SUSPENSIONS
ange of 10–50 Pa again corresponding to the region of steepest slope. If the yield stress
ncroached on this range, we measured the steepest slope as for the �=9 rods. Since the
ield stress becomes large at very small gap sizes and is accompanied by a shear thinning
egime, in principle the measured slope could be a crossover regime rather than an
ndication of the shear thickening regime itself. To check for such behavior, we addition-
lly fit the stress/shear-rate curves in the initial shear thinning regime and shear thicken-
ng regime to the form

0 8 16 24 32

0.0

0.5

1.0

d/a

(1
−ε

)/(
1−

ε p
)

IG. 9. 1−� characterizing the logarithmic slope of the viscosity curve according to ��	1−� for rods with
spect ratio �=9. The gap size d /a is in units of particle width. Data are for several packing fractions and
ormalized by the value of 1−�p corresponding to the logarithmic slope for bulk shear thickening for each
acking fraction. Open circles: �=0.33, 1−�p=0.84. Open triangles: �=0.32, 1−�p=0.58. Solid triangles: �
0.24, 1−�p=0.28. Dotted line: 1−�=0 corresponds to a Newtonian scaling. Solid line: fit of Eq. �4� to the
ata.
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	 = 	y + a1
̇� + a2
̇1/�. �3�

he first two terms characterize the shear thinning behavior by a Herschel–Bulkley form
ith 0���1 �Gopalakrishnan and Zukoski �2004��. The third term characterizes the

hear thickening behavior with 0���1 and is equivalent to �
	1−�. This linear sum
haracterizes the transition between shear thinning and shear thickening well for suspen-
ions that exhibit both shear thickening and a yield stress �Brown et al. �2010��. The
alues of 1−� obtained in this way are slightly higher by about 0.1 in the cases where
here is a large yield stress for d�2.5a than those by locally fitting �
	1−�. For these
mall gap sizes where there is a difference between the two fitting methods, we show the
alues obtained from fitting Eq. �3� in Fig. 11. Using either fitting method, the value of
−� decreases as the gap size decreases and goes to zero at close to two particle layers.
his similarity between the two fitting methods suggests that the leveling off of the
iscosity curves is not primarily due to a crossover effect but instead is due to a change
n the scaling of the underlying shear thickening regime. It is apparent that the transition
rom shear thickening to Newtonian scaling occurs over a shorter range of gap size than
or the longer rods, suggesting the range of the transition depends on the particle length.

. Characteristic lengthscales

We can identify two length scales in the transition from a shear thickening to a
ewtonian scaling shown in Figs. 9 and 11. One is the gap size at which 1−�=0,

orresponding to Newtonian scaling. We will represent this scale by d0. The other is the
haracteristic width of the transition which we will represent by �. We desire a fitting
unction from which we can obtain these length scales as well as capture the plateau at
he value 1−�p in the limit of large gap size. The simplest fitting function that has these
eatures is

1 − ��d� =
1 − �p

1 + �� − d0�/�d − d0�
�4�

o obtain the characteristic rheological length scales from the slope measurements, we fit
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IG. 11. 1−� characterizing the logarithmic slope of the viscosity curve according to ��	1−� for rods with
spect ratio �=6. The gap size d /a is in units of particle widths. Dotted line: �=0 corresponds to a Newtonian
caling. Solid line: fit of Eq. �4� to the data.
q. �4� to the data for rods of each �. For this fitting function, � is precisely the gap size
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1039SHEAR THICKENING IN CONFINED SUSPENSIONS
here the slope is half the plateau value, and a linear extrapolation from d=d0 at a
onstant slope crosses 1−�p at d=�. For the �=9 data, since we have three different
acking fractions, we normalized each by the plateau value of 1−�p, as shown in Fig. 9,
o we can fit all three data sets to the same function. For �=9 we obtain d0

58�6 �m and �=170�20 �m. For �=6 we obtain d0=42�1 �m and �
64�3 �m. These uncertainties are the statistical uncertainties from the fit correspond-

ng to 1 standard deviation. These fit values normalized by particle widths are shown in
ig. 12 as a function of �. Also shown is the value of d0 for the transition to jamming for
pheres which can be considered to have an aspect ratio �=1. Since spheres showed a
udden transition from bulk shear thickening to jamming �i.e., there was no gradual
ransition to a Newtonian scaling�, this corresponds to �=0. Based on how close we

easured to d0 and our uncertainties, we can put an upper bound on � of 0.01 for
pheres. All three value of d0 are close to 2a and consistent with the range 2a−�a�d0

2a, indicating that d0 is set by the particle width. The value of � is on the same order
s the particle length for rods and seems to scale with the particle length. Since �=0 for
=1 spheres, this suggests the crossover should perhaps scale �−1 instead of �. A fit of

he scaling � /a��−1 is shown in Fig. 12. This linear function is seen to fit the data
ithin about a standard deviation, confirming that the width of the transition from a shear

hickening to Newtonian scaling regime is consistent with a dependence on �−1. Note
hat since � is a crossover scale, its magnitude is somewhat arbitrary in nature and so it
s not meaningful to quantify the proportionality beyond the order-of-magnitude. Since �
s around the size of particle length, it seems the transition from a shear thickening to
ewtonian scaling regime coincides with the suppression of the rotational degree of

reedom of particles by confinement.

. DISCUSSION AND CONCLUSIONS

We have measured three length scales �the wavelength of oscillations , the Newton-
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IG. 12. The rheological length scales � �circles� corresponding to the gap-size range over which shear
hickening evolves into a Newtonian scaling regime and d0 �diamonds� corresponding to the gap size where the
ewtonian limit is reached. These are normalized by the particle width a and are shown for spheres �open

ymbols� and rods �solid symbols� as a function of aspect ratio �. Dotted line d0 /a=2. Solid line: fit of � /a
��−1�.
an limit d0, and the crossover scale � from a shear thickening to Newtonian scaling
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1040 BROWN et al.
egime� that show up in the rheology of confined suspensions and connected them di-
ectly to the dimensions of the particles in the suspensions. Spheres or rods compressed
own to two particle widths �=d0� were found to jam in every experiment. Spheres and
ods also showed confinement-induced oscillations at small gap sizes with a wavelength

commensurate with the particle width, as seen in Fig. 2. The major differences in
heology for different particle shapes occurred at gap sizes between two particle widths
nd a few particle lengths. The kink seen in Fig. 2�b�, as the suspension of rods was
educed below 1 particle length, indicates the onset of extra flow resistance from the
nteraction between particles and boundaries. This behavior is also seen in the viscosity
urves of Figs. 8 and 10 as the viscosity at low stress increases due to the appearance of
yield stress at smaller gap sizes. As the gap is reduced below about a rod length, the

umber of degrees of freedom for the particles is reduced as they may no longer fully
otate out of the plane made by the shear direction and gradient. Long rods also showed
gradual transition of width � from a shear thickening regime to a Newtonian scaling

egime in the limit of d0. The width of the transition could be characterized by a depen-
ence on aspect ratio �−1. This supports an interpretation based on the freedom of
article rotation since �−1=0 corresponds to a shape that has no restrictions on particle
otation and �−1 can be considered a measure of how much free space is required for a
article to rotate and thus how large a gap is required to reach the bulk shear thickening
imit. The fact that the transition from a shear thickening to Newtonian scaling regime
oincides with the suppression of the rotational degree of freedom of particles suggests
hat this degree of freedom may be necessary for discontinuous shear thickening.

There is an interesting contrast between the shear thickening phase boundaries due to
onfinement and due to jamming at �c. For each shape, as the gap size was reduced and
he yield stress increased, it encroached on the shear thickening regime which usually
emains in a relatively fixed stress range without the influence of a yield stress. When the
onfinement leads to a large enough yield stress below a gap about two particle widths
cross, the shear thickening regime no longer exists. This is consistent with the picture
hat a yield stress from any source will hide shear thickening behavior and eliminate it if
he total shear thinning stress exceeds the upper stress range of the shear thickening
egime �Brown et al. �2010��. This was shown to be the case regardless of the source of
he yield stress: it could be due to either chemical or induced attractions, as well as from
onfinement when the packing fraction exceeds the jamming point. Here we have shown
hat another source of confinement, namely, bringing the walls closer together, leads to
he same effect. The non-equilibrium phase diagram showing the shrinking of the shear
hickening stress range as the yield stress increases at smaller gap sizes is shown in Fig.
3. It shows that the yield stress and accompanying shear thinning regime shrink the
hear thickening regime to zero at about d0. An interesting contrast with jamming in the
ulk can be made by noting that the introduction of a yield stress by confinement shrinks
nd eliminates the shear thickening regime just as ordering of the rods transforms the
hear thickening regime into a Newtonian scaling regime. While discontinuous shear
hickening is eliminated by confinement either by increasing the packing fraction or
ecreasing the gap size, the shear thickening behavior approaches two different limits. As
→�c from below, �→0, corresponding to a discontinuous jump in stress with shear

ate �the strongest possible shear thickening�, regardless of shape �Brown and Jaeger
2009�; Egres and Wagner �2005��. On the other hand as d→d0 from above for rods, �

1, corresponding to a Newtonian scaling regime. This difference may be expressed in
erms of the order of the system, while �→�c from below corresponds to the epitome of
isorder �O’Hern et al. �2003��, d→d0 from above corresponds to a forced planar order-

ng for rods. The fact that bulk discontinuous shear thickening is qualitatively similar for
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1041SHEAR THICKENING IN CONFINED SUSPENSIONS
oth spheres and rods �see Figs. 6, 8, and 10, and Egres and Wagner �2005�� but the
pheres do not have a transition to a Newtonian scaling regime underscores the fact that
his difference is the result of forced ordering of rods at small gaps.

We showed that confined suspensions over a wide range of packing fractions will jam
hen compressed down about two particle layers �Fig. 4�. This transition from fluid-like
ehavior to jamming is similar to the case for pure fluids which also generate a frictional
esistance to shear when they are compressed down to two molecules thick �Van Alsten
nd Granick �1988��. Confinement-induced oscillations have also been observed in chan-
el flow where the channel width becomes comparable to the particle spacing �Anders et
l. �2000��. While we have observed these confinement-induced oscillations for gap sizes
p to 9 particle diameters for spheres, discontinuous shear thickening remains largely
naffected in this range. Therefore, these commensurability effects of confinement gave
o indication that they were related to shear thickening and we suspect that they are
eneral features of the granular limit of fluids.

It has been suggested that shear thickening is a form of transient jamming �Farr et al.
1997�; Cates et al. �1998��. However, the transient jamming observed in Fig. 5 should be
onsidered distinct from discontinuous shear thickening. The latter is a reproducible
unction of shear rate or stress and has viscosity curves independent of the control mode.
rom Fig. 5, it is apparent that the underlying viscosity curve without these jumps is still
hear thickening with the same slope as at larger gap sizes. Thus the shear thickening
bserved at larger gaps cannot be the result of a smoothing of these transient jamming
vents over a larger sample. Despite the fact that there is transient jamming for small gap
izes, the underlying shear thickening behavior was not affected at all for spheres until
he permanent jamming transition eliminated it. Thus transient jamming of the type we
bserved was an additional effect of confinement and not the cause of discontinuous
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IG. 13. A non-equilibrium phase diagram showing shear thickening, shear thinning, and jammed regions as a
unction of gap size for �=6 rodsd at �=0.31. Open circles: yield stress. Down-pointing triangles: onset of
hear thickening. Up-pointing triangles: maximum stress of the shear thickening regime. Dotted line: d0 which
orresponds to the point where the shear thickening slope 1−� goes to zero.
hear thickening. We note that Chow and Zukoski �1995� found a qualitatively similar
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ffect, in which a weak shear thickening effect associated with large fluctuations of the
pparent viscosity emerged as the gap size was reduced below about 50 particle layers.

We found that rods were forced to align parallel to the plates at small gaps at which
hear thickening was eliminated �see Figs. 9 and 11�. This dependence on particle ar-
angement may be relevant for certain mechanisms of stress transmission to the rheom-
ter plates. For example, purely viscous lubrication should occur equally well for rods
ligned with the plates, but since we find shear thickening disappears those sorts of
ouplings are not likely responsible for discontinuous shear thickening. On the other
and, if the coupling involves some compressional component, long rods forced to align
ith the shear cannot easily pile up to transfer shear and compressive stress to the plates.
e also observe an increasing upward normal force on the rheometer tool as the shear

ate increases in the shear thickening regime, and that normal stress is typically on the
ame order as the shear stress. These observations suggest that the mechanism of stress
ransfer to the rheometer plates for discontinuous shear thickening is compressive and not
iscous.

One proposed mechanism in which compressional stress contributes to shear thicken-
ng is hydroclustering �Brady and Bossis �1988�; Farr et al. �1997�; Bergenholtz et al.
2002�; Shenoy et al. �2003�; Melrose and Ball �2004�� in which the compressive and
iscous lubrication stresses cause particles to cluster along the compressive axis at a 45°
iagonal between the shear and shear gradient directions. Our observation that shear
hickening is eliminated for confined rods may be expected for such a mechanism be-
ause in such a layered arrangement they cannot easily align diagonally to transmit stress
long the compressive axis. Another proposed mechanism for shear thickening is dilation
Metzner and Whitlock �1958�; Barnes �1999�; Lootens et al. �2005�; Fall et al. �2008��.
ensely packed hard spheres must dilate under shear because their shape does not allow

hem to naturally arrange into layers that can shear over each other without interference.
e note that we also observe an apparent increase in the roughness of the suspension

urface as the shear rate increases in the shear thickening regime. Dilation requires at
inimum two particle layers—one to ride over the other—and this is exactly what was

ound in Fig. 7 as the minimum requirement for discontinuous shear thickening. Rods can
lso dilate when sheared in disorganized structures because some particles rotate out of
lignment to block the motion of other particles. In contrast, when rods are forced to
lign in small gaps they can arrange into organized layers that do not have any overlap.
hese layers do not need to dilate when sheared and this is precisely the condition under
hich we find shear thickening to weaken and eventually disappear.
For either mechanism, it is still unclear how to explain the steep stress/shear-rate

elations characteristic of discontinuous shear thickening. Our findings on how the elimi-
ation of shear thickening under confinement depends on particle geometry may provide
dditional constraints to resolve this problem. Additionally, our finding that shear thick-
ning behavior scales down to as few as two particle layers for spheres may also offer
dvantages for simulations in which it is difficult to model complicated particle interac-
ions for large numbers of particles.
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1043SHEAR THICKENING IN CONFINED SUSPENSIONS
PPENDIX: THE SHEAR PROFILE AND SLIP

A variation of apparent viscosity with gap size in rheological measurements has often
een attributed to wall slip. Slip can result in a higher measured shear rate than the
verage shear rate 
̇ f in the fluid. It is usually characterized by a slip length ls of the plate
isplacement in excess of the fluid displacement next to the plate per unit strain of the
uid. This gives a measured shear rate of 
̇= 
̇ f�1+2ls /d� �Yoshimura and Prudhomme
1988�; Maranzano and Wagner �2001�; Egres and Wagner �2005��. This would tend to
ive a lower measured viscosity for small gap sizes with a more dramatic effect for d
ls. Slip has been measured to have an increasing effect at higher applied stresses and

acking fractions �Chryss et al. �2005�; Egres and Wagner �2005��. This leads to less
teep shear thickening curves at higher stresses, and can even cause curves at higher
acking fractions to appear less steep than curves at lower packing fractions �Chryss et
l. �2005��, contrary to the usual trend for discontinuous shear thickening �Maranzano
nd Wagner �2001�; Egres and Wagner �2005�; Brown and Jaeger �2009��. Some features
f our measurements are qualitatively different from slip, for example, the slopes of the
iscosity curves do not decrease at higher stresses within the shear thickening regime,
nd the weakening of shear thickening at small gap sizes for rods does not go away at
ower packing fractions as expected for slip. However, the general trend of lower viscos-
ty at smaller gap sizes is qualitatively similar to our observations for rods, and even the
unctional dependence on d is similar to what we find in Figs. 9 and 11 �although the
ffect of slip is expected to be on the viscosity magnitude instead of the slope�. Since the
raditional way to determine slip is based on measuring the dependence of the apparent
iscosity on gap size �Yoshimura and Prudhomme �1988��, a more direct measurement of
lip is needed to distinguish between slip and granular confinement effects at small gaps
o we can confirm that the measured gap-size dependence was not a result of slip.

To measure slip directly, we measured shear profiles optically in some experiments.
e used a video camera with a microscope lens that can resolve 20 �m. The camera was

laced next to the rheometer and focused on a 4 mm across by 1 mm high area in the
lane of the shear direction and shear gradient at the outer edge of the sample. While
here is some distortion from looking through the curved liquid-air interface, these videos
an observe individual particle motions and can be used to estimate the shear profile.
rom these videos we observed that the shear flow is fully developed with an approxi-
ately linear shear profile at stresses above the shear thickening regime. At lower stresses

n the shear thickening regime, the velocity gradient is not uniform in gap size but higher
ear the moving plate. This is the case for both spheres and rods in qualitative agreement
ith MRI measurements of cornstarch �Fall et al. �2008��. It appears as if there is a shear
and near the top plate and that there is only minimal net motion further down in the
ayer. The width of this effective shear band decreases as the stress decreases, and below
bout the onset of shear thickening, there is almost no particle motion at all when the
articles are denser than the liquid because they settle on the bottom plate. This settling
ccurs in the steady state limit regardless of shear history because the shear stress is not
nough to keep the particles suspended. This suggest that some of the nonlinearity at low
tresses can be due to gravity, although a significant nonlinearity is still observed in
ensity matched cornstarch in a Couette geometry �Fall et al. �2008��. We also observed
or rods that while most particles tend to be aligned with the shear flow, many rotate out
f the horizontal plane where they have the space to at larger gap sizes. Rotations all the
ay around by 180° are found even for d��a where they cannot be fully in a vertical
lane but must be slanted somewhat out of the plane of view. From these videos we

anually tracked the horizontal distance traveled by individual rods over time intervals
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f up to 160 s �sometimes less time if the particle could not be reliably tracked�. The
ean velocity v of each particle was plotted as a function of the mean height y of that

article over the tracking period in Fig. 14. The velocities and heights were normalized
y the plate velocity vp and plate height d which were calibrated by the videos. To
stimate the slip length, we note that v�y=d� /vp= 
̇ f / 
̇= �1+2ls /d�−1. We then fit a first
rder expansion v /vp= �1+2ls /d�−1−a1�1−y /d� to these data for y�d /2 to obtain ls. We
o not mean for this to be an exhaustive study of the shear profile or imply that the shear
rofile is linear by this fit. For �=9 rods at �=0.29 �below �c� and 
̇=0.1 s−1 �in the
hear thinning regime at stresses above shear thickening�, we did this analysis for two
ifferent gap sizes. For d=520 �m, this gives a slip length of ls=50�30 �m. For d
96 �m, this gives a slip length of ls=39�4 �m. The data for the two gap sizes give
consistent value for the slip length as expected. The shear rate measured at the smaller
ap size was an order-of-magnitude smaller than for a bulk suspension at the same stress.
owever, the value of the slip length measured could explain at most a measured shear-

ate ratio of 1.6 between the two gap sizes. This value is the worst case scenario if the
unctional form of slip is the same as the geometric effects we observed; as explained in
he previous paragraph, there are also some qualitative differences. In fact, the maximum
ossible shear-rate ratio, which occurs in the limit of large slip lengths, is equal to the
atio of the gap sizes. So even for very large slip lengths, the ratio of measured shear rates
ue to slip could never be greater than 5.4. Alternatively, the notable effect of the gap size
n discontinuous shear thickening is the change in the slope of the viscosity curve. From
hat point of view, one should ask if the increase in shear rate with stress in the shear
hickening regime can be the result of slip. By comparison, in the bulk behavior at high
acking fractions, the shear rate is approximately constant in the shear thickening regime.
or �=9 and d=96 �m, the shear rate increases by about a factor of 10 �see Fig. 8�
gain this is too large an effect to be explained by slip.

Therefore, considering the smallness of the measured values of slip, and the lack of a
elf-consistent slip model that could explain the variation in the slope of the viscosity
urves with gap size shown in Figs. 9 and 11, we conclude that these results cannot
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IG. 14. Reconstructed shear profile for individual �=9 rods tracked using video microscopy. Velocity v
ormalized by plate velocity vp as a function of height y normalized by plate height d. Solid circles: d
0.52 mm. Open circles: d=0.096 mm. Solid line: fit of v /vp= �1+2ls /d�−1−a1�1−y /d� to solid circles for
�d /2 to estimate the slip length ls. Dotted line: fit of the same function to open circles. The amount of slip
ound is too small to account for the transition from a shear thickening to Newtonian scaling regime for rods.
rimarily be due to slip. Additionally, since the gap-size dependence at few particle layers
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1045SHEAR THICKENING IN CONFINED SUSPENSIONS
s not consistent with the traditional slip correction models based on the hydrodynamic
imit �Yoshimura and Prudhomme �1988��, then we cannot use this gap-size dependence
o correct for slip effects.
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